/* * This file is part of the Micro Python project, http://micropython.org/ * * Original template for this file comes from: * Low level disk I/O module skeleton for FatFs, (C)ChaN, 2013 * * The MIT License (MIT) * * Copyright (c) 2013, 2014 Damien P. George * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include #include "py/mphal.h" #include "py/runtime.h" #include "lib/fatfs/ff.h" /* FatFs lower layer API */ #include "lib/fatfs/diskio.h" /* FatFs lower layer API */ #include "storage.h" #include "sdcard.h" #include "extmod/fsusermount.h" // constants for block protocol ioctl //#define BP_IOCTL_INIT (1) // unused //#define BP_IOCTL_DEINIT (2) // unused #define BP_IOCTL_SYNC (3) #define BP_IOCTL_SEC_COUNT (4) #define BP_IOCTL_SEC_SIZE (5) /*-----------------------------------------------------------------------*/ /* Initialize a Drive */ /*-----------------------------------------------------------------------*/ DSTATUS disk_initialize ( BYTE pdrv /* Physical drive nmuber (0..) */ ) { switch (pdrv) { #if MICROPY_HW_HAS_FLASH case PD_FLASH: storage_init(); return 0; #endif #if MICROPY_HW_HAS_SDCARD case PD_SDCARD: if (!sdcard_power_on()) { return STA_NODISK; } // TODO return STA_PROTECT if SD card is read only return 0; #endif case PD_USER: if (MP_STATE_PORT(fs_user_mount) == NULL) { return STA_NODISK; } if (MP_STATE_PORT(fs_user_mount)->writeblocks[0] == MP_OBJ_NULL) { return STA_PROTECT; } return 0; } return STA_NOINIT; } /*-----------------------------------------------------------------------*/ /* Get Disk Status */ /*-----------------------------------------------------------------------*/ DSTATUS disk_status ( BYTE pdrv /* Physical drive nmuber (0..) */ ) { switch (pdrv) { case PD_FLASH : // flash is ready return 0; #if MICROPY_HW_HAS_SDCARD case PD_SDCARD: // TODO return STA_PROTECT if SD card is read only return 0; #endif case PD_USER: if (MP_STATE_PORT(fs_user_mount) == NULL) { return STA_NODISK; } if (MP_STATE_PORT(fs_user_mount)->writeblocks[0] == MP_OBJ_NULL) { return STA_PROTECT; } return 0; } return STA_NOINIT; } /*-----------------------------------------------------------------------*/ /* Read Sector(s) */ /*-----------------------------------------------------------------------*/ DRESULT disk_read ( BYTE pdrv, /* Physical drive nmuber (0..) */ BYTE *buff, /* Data buffer to store read data */ DWORD sector, /* Sector address (LBA) */ UINT count /* Number of sectors to read (1..128) */ ) { switch (pdrv) { #if MICROPY_HW_HAS_FLASH case PD_FLASH: for (int i = 0; i < count; i++) { if (!storage_read_block(buff + i * FLASH_BLOCK_SIZE, sector + i)) { return RES_ERROR; } } return RES_OK; #endif #if MICROPY_HW_HAS_SDCARD case PD_SDCARD: if (sdcard_read_blocks(buff, sector, count) != 0) { return RES_ERROR; } return RES_OK; #endif case PD_USER: if (MP_STATE_PORT(fs_user_mount) == NULL) { // nothing mounted return RES_ERROR; } MP_STATE_PORT(fs_user_mount)->readblocks[2] = MP_OBJ_NEW_SMALL_INT(sector); MP_STATE_PORT(fs_user_mount)->readblocks[3] = mp_obj_new_bytearray_by_ref(count * 512, buff); mp_call_method_n_kw(2, 0, MP_STATE_PORT(fs_user_mount)->readblocks); return RES_OK; } return RES_PARERR; } /*-----------------------------------------------------------------------*/ /* Write Sector(s) */ /*-----------------------------------------------------------------------*/ #if _USE_WRITE DRESULT disk_write ( BYTE pdrv, /* Physical drive nmuber (0..) */ const BYTE *buff, /* Data to be written */ DWORD sector, /* Sector address (LBA) */ UINT count /* Number of sectors to write (1..128) */ ) { switch (pdrv) { #if MICROPY_HW_HAS_FLASH case PD_FLASH: for (int i = 0; i < count; i++) { if (!storage_write_block(buff + i * FLASH_BLOCK_SIZE, sector + i)) { return RES_ERROR; } } return RES_OK; #endif #if MICROPY_HW_HAS_SDCARD case PD_SDCARD: if (sdcard_write_blocks(buff, sector, count) != 0) { return RES_ERROR; } return RES_OK; #endif case PD_USER: if (MP_STATE_PORT(fs_user_mount) == NULL) { // nothing mounted return RES_ERROR; } if (MP_STATE_PORT(fs_user_mount)->writeblocks[0] == MP_OBJ_NULL) { // read-only block device return RES_ERROR; } MP_STATE_PORT(fs_user_mount)->writeblocks[2] = MP_OBJ_NEW_SMALL_INT(sector); MP_STATE_PORT(fs_user_mount)->writeblocks[3] = mp_obj_new_bytearray_by_ref(count * 512, (void*)buff); mp_call_method_n_kw(2, 0, MP_STATE_PORT(fs_user_mount)->writeblocks); return RES_OK; } return RES_PARERR; } #endif /*-----------------------------------------------------------------------*/ /* Miscellaneous Functions */ /*-----------------------------------------------------------------------*/ #if _USE_IOCTL DRESULT disk_ioctl ( BYTE pdrv, /* Physical drive nmuber (0..) */ BYTE cmd, /* Control code */ void *buff /* Buffer to send/receive control data */ ) { switch (pdrv) { #if MICROPY_HW_HAS_FLASH case PD_FLASH: switch (cmd) { case CTRL_SYNC: storage_flush(); return RES_OK; case GET_BLOCK_SIZE: *((DWORD*)buff) = 1; // high-level sector erase size in units of the small (512) block size return RES_OK; } break; #endif #if MICROPY_HW_HAS_SDCARD case PD_SDCARD: switch (cmd) { case CTRL_SYNC: return RES_OK; case GET_BLOCK_SIZE: *((DWORD*)buff) = 1; // high-level sector erase size in units of the small (512) block size return RES_OK; } break; #endif case PD_USER: { fs_user_mount_t *vfs = MP_STATE_PORT(fs_user_mount); if (vfs == NULL) { // nothing mounted return RES_ERROR; } if (vfs->u.old.count[1] == MP_OBJ_SENTINEL) { // new protocol with ioctl switch (cmd) { case CTRL_SYNC: vfs->u.ioctl[2] = MP_OBJ_NEW_SMALL_INT(BP_IOCTL_SYNC); vfs->u.ioctl[3] = MP_OBJ_NEW_SMALL_INT(0); // unused mp_call_method_n_kw(2, 0, vfs->u.ioctl); vfs->u.ioctl[3] = MP_OBJ_SENTINEL; // indicate new protocol return RES_OK; case GET_SECTOR_COUNT: { vfs->u.ioctl[2] = MP_OBJ_NEW_SMALL_INT(BP_IOCTL_SEC_COUNT); vfs->u.ioctl[3] = MP_OBJ_NEW_SMALL_INT(0); // unused mp_obj_t ret = mp_call_method_n_kw(2, 0, vfs->u.ioctl); *((DWORD*)buff) = mp_obj_get_int(ret); vfs->u.ioctl[3] = MP_OBJ_SENTINEL; // indicate new protocol return RES_OK; } case GET_SECTOR_SIZE: { vfs->u.ioctl[2] = MP_OBJ_NEW_SMALL_INT(BP_IOCTL_SEC_SIZE); vfs->u.ioctl[3] = MP_OBJ_NEW_SMALL_INT(0); // unused mp_obj_t ret = mp_call_method_n_kw(2, 0, vfs->u.ioctl); *((WORD*)buff) = mp_obj_get_int(ret); vfs->u.ioctl[3] = MP_OBJ_SENTINEL; // indicate new protocol return RES_OK; } case GET_BLOCK_SIZE: *((DWORD*)buff) = 1; // erase block size in units of sector size return RES_OK; } } else { // old protocol with sync and count switch (cmd) { case CTRL_SYNC: if (vfs->u.old.sync[0] != MP_OBJ_NULL) { mp_call_method_n_kw(0, 0, vfs->u.old.sync); } return RES_OK; case GET_SECTOR_COUNT: { mp_obj_t ret = mp_call_method_n_kw(0, 0, vfs->u.old.count); *((DWORD*)buff) = mp_obj_get_int(ret); return RES_OK; } case GET_SECTOR_SIZE: *((WORD*)buff) = 512; // old protocol had fixed sector size return RES_OK; case GET_BLOCK_SIZE: *((DWORD*)buff) = 1; // erase block size in units of sector size return RES_OK; } } break; } } return RES_PARERR; } #endif