/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2021 Scott Shawcroft for Adafruit Industries * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ // This file contains all of the Python API definitions for the // rp2pio.StateMachine class. #include #include "shared-bindings/microcontroller/Pin.h" #include "bindings/rp2pio/StateMachine.h" #include "shared-bindings/util.h" #include "shared/runtime/buffer_helper.h" #include "shared/runtime/context_manager_helpers.h" #include "shared/runtime/interrupt_char.h" #include "py/binary.h" #include "py/mperrno.h" #include "py/objproperty.h" #include "py/runtime.h" #include "supervisor/shared/translate.h" //| class StateMachine: //| """A single PIO StateMachine //| //| The programmable I/O peripheral on the RP2 series of microcontrollers is //| unique. It is a collection of generic state machines that can be //| used for a variety of protocols. State machines may be independent or //| coordinated. Program memory and IRQs are shared between the state machines //| in a particular PIO instance. They are independent otherwise. //| //| This class is designed to facilitate sharing of PIO resources. By default, //| it is assumed that the state machine is used on its own and can be placed //| in either PIO. State machines with the same program will be placed in the //| same PIO if possible.""" //| //| def __init__(self, //| program: ReadableBuffer, //| frequency: int, //| *, //| init: Optional[ReadableBuffer] = None, //| first_out_pin: Optional[microcontroller.Pin] = None, //| out_pin_count: int = 1, //| initial_out_pin_state: int = 0, //| initial_out_pin_direction: int = 0xffffffff, //| first_in_pin: Optional[microcontroller.Pin] = None, //| in_pin_count: int = 1, //| pull_in_pin_up: int = 0, //| pull_in_pin_down: int = 0, //| first_set_pin: Optional[microcontroller.Pin] = None, //| set_pin_count: int = 1, //| initial_set_pin_state: int = 0, //| initial_set_pin_direction: int = 0x1f, //| first_sideset_pin: Optional[microcontroller.Pin] = None, //| sideset_pin_count: int = 1, //| initial_sideset_pin_state: int = 0, //| initial_sideset_pin_direction: int = 0x1f, //| sideset_enable: bool = False, //| exclusive_pin_use: bool = True, //| auto_pull: bool = False, //| pull_threshold: int = 32, //| out_shift_right: bool = True, //| wait_for_txstall: bool = True, //| auto_push: bool = False, //| push_threshold: int = 32, //| in_shift_right: bool = True, //| user_interruptible: bool = True, //| wrap_target: int = 0, //| wrap: int = -1, //| ) -> None: //| //| """Construct a StateMachine object on the given pins with the given program. //| //| :param ReadableBuffer program: the program to run with the state machine //| :param int frequency: the target clock frequency of the state machine. Actual may be less. //| :param ReadableBuffer init: a program to run once at start up. This is run after program //| is started so instructions may be intermingled //| :param ~microcontroller.Pin first_out_pin: the first pin to use with the OUT instruction //| :param int out_pin_count: the count of consecutive pins to use with OUT starting at first_out_pin //| :param int initial_out_pin_state: the initial output value for out pins starting at first_out_pin //| :param int initial_out_pin_direction: the initial output direction for out pins starting at first_out_pin //| :param ~microcontroller.Pin first_in_pin: the first pin to use with the IN instruction //| :param int in_pin_count: the count of consecutive pins to use with IN starting at first_in_pin //| :param int pull_in_pin_up: a 1-bit in this mask sets pull up on the corresponding in pin //| :param int pull_in_pin_down: a 1-bit in this mask sets pull down on the corresponding in pin. Setting both pulls enables a "bus keep" function, i.e. a weak pull to whatever is current high/low state of GPIO. //| :param ~microcontroller.Pin first_set_pin: the first pin to use with the SET instruction //| :param int set_pin_count: the count of consecutive pins to use with SET starting at first_set_pin //| :param int initial_set_pin_state: the initial output value for set pins starting at first_set_pin //| :param int initial_set_pin_direction: the initial output direction for set pins starting at first_set_pin //| :param ~microcontroller.Pin first_sideset_pin: the first pin to use with a side set //| :param int sideset_pin_count: the count of consecutive pins to use with a side set starting at first_sideset_pin. Does not include sideset enable //| :param int initial_sideset_pin_state: the initial output value for sideset pins starting at first_sideset_pin //| :param int initial_sideset_pin_direction: the initial output direction for sideset pins starting at first_sideset_pin //| :param bool sideset_enable: True when the top sideset bit is to enable. This should be used with the ".side_set # opt" directive //| :param ~microcontroller.Pin jmp_pin: the pin which determines the branch taken by JMP PIN instructions //| :param bool exclusive_pin_use: When True, do not share any pins with other state machines. Pins are never shared with other peripherals //| :param bool auto_pull: When True, automatically load data from the tx FIFO into the //| output shift register (OSR) when an OUT instruction shifts more than pull_threshold bits //| :param int pull_threshold: Number of bits to shift before loading a new value into the OSR from the tx FIFO //| :param bool out_shift_right: When True, data is shifted out the right side (LSB) of the //| OSR. It is shifted out the left (MSB) otherwise. NOTE! This impacts data alignment //| when the number of bytes is not a power of two (1, 2 or 4 bytes). //| :param bool wait_for_txstall: When True, writing data out will block until the TX FIFO and OSR are empty //| and an instruction is stalled waiting for more data. When False, data writes won't //| wait for the OSR to empty (only the TX FIFO) so make sure you give enough time before //| deiniting or stopping the state machine. //| :param bool auto_push: When True, automatically save data from input shift register //| (ISR) into the rx FIFO when an IN instruction shifts more than push_threshold bits //| :param int push_threshold: Number of bits to shift before saving the ISR value to the RX FIFO //| :param bool in_shift_right: When True, data is shifted into the right side (LSB) of the //| ISR. It is shifted into the left (MSB) otherwise. NOTE! This impacts data alignment //| when the number of bytes is not a power of two (1, 2 or 4 bytes). //| :param bool user_interruptible: When True (the default), //| `write()`, `readinto()`, and `write_readinto()` can be interrupted by a ctrl-C. //| This is useful when developing a PIO program: if there is an error in the program //| that causes an infinite loop, you will be able to interrupt the loop. //| However, if you are writing to a device that can get into a bad state if a read or write //| is interrupted, you may want to set this to False after your program has been vetted. //| :param int wrap_target: The target instruction number of automatic wrap. Defaults to the first instruction of the program. //| :param int wrap: The instruction after which to wrap to the ``wrap`` //| instruction. As a special case, -1 (the default) indicates the //| last instruction of the program. //| """ //| ... //| STATIC mp_obj_t rp2pio_statemachine_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *all_args) { rp2pio_statemachine_obj_t *self = m_new_obj(rp2pio_statemachine_obj_t); self->base.type = &rp2pio_statemachine_type; enum { ARG_program, ARG_frequency, ARG_init, ARG_first_out_pin, ARG_out_pin_count, ARG_initial_out_pin_state, ARG_initial_out_pin_direction, ARG_first_in_pin, ARG_in_pin_count, ARG_pull_in_pin_up, ARG_pull_in_pin_down, ARG_first_set_pin, ARG_set_pin_count, ARG_initial_set_pin_state, ARG_initial_set_pin_direction, ARG_first_sideset_pin, ARG_sideset_pin_count, ARG_initial_sideset_pin_state, ARG_initial_sideset_pin_direction, ARG_sideset_enable, ARG_jmp_pin, ARG_exclusive_pin_use, ARG_auto_pull, ARG_pull_threshold, ARG_out_shift_right, ARG_wait_for_txstall, ARG_auto_push, ARG_push_threshold, ARG_in_shift_right, ARG_user_interruptible, ARG_wrap_target, ARG_wrap,}; static const mp_arg_t allowed_args[] = { { MP_QSTR_program, MP_ARG_REQUIRED | MP_ARG_OBJ }, { MP_QSTR_frequency, MP_ARG_REQUIRED | MP_ARG_INT }, { MP_QSTR_init, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = mp_const_none} }, { MP_QSTR_first_out_pin, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = mp_const_none} }, { MP_QSTR_out_pin_count, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 1} }, { MP_QSTR_initial_out_pin_state, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} }, { MP_QSTR_initial_out_pin_direction, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0xffffffff} }, { MP_QSTR_first_in_pin, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = mp_const_none} }, { MP_QSTR_in_pin_count, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 1} }, { MP_QSTR_pull_in_pin_up, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} }, { MP_QSTR_pull_in_pin_down, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} }, { MP_QSTR_first_set_pin, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = mp_const_none} }, { MP_QSTR_set_pin_count, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 1} }, { MP_QSTR_initial_set_pin_state, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} }, { MP_QSTR_initial_set_pin_direction, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0x1f} }, { MP_QSTR_first_sideset_pin, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = mp_const_none} }, { MP_QSTR_sideset_pin_count, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 1} }, { MP_QSTR_initial_sideset_pin_state, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} }, { MP_QSTR_initial_sideset_pin_direction, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0x1f} }, { MP_QSTR_sideset_enable, MP_ARG_KW_ONLY | MP_ARG_BOOL, {.u_bool = false} }, { MP_QSTR_jmp_pin, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = mp_const_none} }, { MP_QSTR_exclusive_pin_use, MP_ARG_KW_ONLY | MP_ARG_BOOL, {.u_bool = true} }, { MP_QSTR_auto_pull, MP_ARG_KW_ONLY | MP_ARG_BOOL, {.u_bool = false} }, { MP_QSTR_pull_threshold, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 32} }, { MP_QSTR_out_shift_right, MP_ARG_KW_ONLY | MP_ARG_BOOL, {.u_bool = true} }, { MP_QSTR_wait_for_txstall, MP_ARG_KW_ONLY | MP_ARG_BOOL, {.u_bool = true} }, { MP_QSTR_auto_push, MP_ARG_KW_ONLY | MP_ARG_BOOL, {.u_bool = false} }, { MP_QSTR_push_threshold, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 32} }, { MP_QSTR_in_shift_right, MP_ARG_KW_ONLY | MP_ARG_BOOL, {.u_bool = true} }, { MP_QSTR_user_interruptible, MP_ARG_KW_ONLY | MP_ARG_BOOL, {.u_bool = true} }, { MP_QSTR_wrap_target, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} }, { MP_QSTR_wrap, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} }, }; mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all_kw_array(n_args, n_kw, all_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); mp_buffer_info_t bufinfo; mp_get_buffer_raise(args[ARG_program].u_obj, &bufinfo, MP_BUFFER_READ); mp_buffer_info_t init_bufinfo; init_bufinfo.len = 0; mp_get_buffer(args[ARG_init].u_obj, &init_bufinfo, MP_BUFFER_READ); // We don't validate pin in use here because we may be ok sharing them within a PIO. const mcu_pin_obj_t *first_out_pin = validate_obj_is_pin_or_none(args[ARG_first_out_pin].u_obj); if (args[ARG_out_pin_count].u_int < 1) { mp_raise_ValueError(translate("Pin count must be at least 1")); } const mcu_pin_obj_t *first_in_pin = validate_obj_is_pin_or_none(args[ARG_first_in_pin].u_obj); if (args[ARG_in_pin_count].u_int < 1) { mp_raise_ValueError(translate("Pin count must be at least 1")); } const mcu_pin_obj_t *first_set_pin = validate_obj_is_pin_or_none(args[ARG_first_set_pin].u_obj); if (args[ARG_set_pin_count].u_int < 1) { mp_raise_ValueError(translate("Pin count must be at least 1")); } if (args[ARG_set_pin_count].u_int > 5) { mp_raise_ValueError(translate("Set pin count must be between 1 and 5")); } const mcu_pin_obj_t *first_sideset_pin = validate_obj_is_pin_or_none(args[ARG_first_sideset_pin].u_obj); if (args[ARG_sideset_pin_count].u_int < 1) { mp_raise_ValueError(translate("Pin count must be at least 1")); } if (args[ARG_sideset_pin_count].u_int > 5) { mp_raise_ValueError(translate("Side set pin count must be between 1 and 5")); } const mcu_pin_obj_t *jmp_pin = validate_obj_is_pin_or_none(args[ARG_jmp_pin].u_obj); mp_int_t pull_threshold = args[ARG_pull_threshold].u_int; mp_int_t push_threshold = args[ARG_push_threshold].u_int; if (pull_threshold < 1 || pull_threshold > 32) { mp_raise_ValueError(translate("pull_threshold must be between 1 and 32")); } if (push_threshold < 1 || push_threshold > 32) { mp_raise_ValueError(translate("push_threshold must be between 1 and 32")); } if (bufinfo.len < 2) { mp_raise_ValueError(translate("Program must contain at least one 16-bit instruction.")); } if (bufinfo.len % 2 != 0) { mp_raise_ValueError(translate("Program size invalid")); } if (bufinfo.len > 64) { mp_raise_ValueError(translate("Program too large")); } if (init_bufinfo.len % 2 != 0) { mp_raise_ValueError(translate("Init program size invalid")); } int wrap = args[ARG_wrap].u_int; int wrap_target = args[ARG_wrap_target].u_int; common_hal_rp2pio_statemachine_construct(self, bufinfo.buf, bufinfo.len / 2, args[ARG_frequency].u_int, init_bufinfo.buf, init_bufinfo.len / 2, first_out_pin, args[ARG_out_pin_count].u_int, args[ARG_initial_out_pin_state].u_int, args[ARG_initial_out_pin_direction].u_int, first_in_pin, args[ARG_in_pin_count].u_int, args[ARG_pull_in_pin_up].u_int, args[ARG_pull_in_pin_down].u_int, first_set_pin, args[ARG_set_pin_count].u_int, args[ARG_initial_set_pin_state].u_int, args[ARG_initial_set_pin_direction].u_int, first_sideset_pin, args[ARG_sideset_pin_count].u_int, args[ARG_initial_sideset_pin_state].u_int, args[ARG_initial_sideset_pin_direction].u_int, args[ARG_sideset_enable].u_bool, jmp_pin, 0, args[ARG_exclusive_pin_use].u_bool, args[ARG_auto_pull].u_bool, pull_threshold, args[ARG_out_shift_right].u_bool, args[ARG_wait_for_txstall].u_bool, args[ARG_auto_push].u_bool, push_threshold, args[ARG_in_shift_right].u_bool, args[ARG_user_interruptible].u_bool, wrap_target, wrap); return MP_OBJ_FROM_PTR(self); } //| def deinit(self) -> None: //| """Turn off the state machine and release its resources.""" //| ... //| STATIC mp_obj_t rp2pio_statemachine_obj_deinit(mp_obj_t self_in) { rp2pio_statemachine_obj_t *self = MP_OBJ_TO_PTR(self_in); common_hal_rp2pio_statemachine_deinit(self); return mp_const_none; } MP_DEFINE_CONST_FUN_OBJ_1(rp2pio_statemachine_deinit_obj, rp2pio_statemachine_obj_deinit); //| def __enter__(self) -> StateMachine: //| """No-op used by Context Managers. //| Provided by context manager helper.""" //| ... //| //| def __exit__(self) -> None: //| """Automatically deinitializes the hardware when exiting a context. See //| :ref:`lifetime-and-contextmanagers` for more info.""" //| ... //| STATIC mp_obj_t rp2pio_statemachine_obj___exit__(size_t n_args, const mp_obj_t *args) { (void)n_args; common_hal_rp2pio_statemachine_deinit(args[0]); return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(rp2pio_statemachine_obj___exit___obj, 4, 4, rp2pio_statemachine_obj___exit__); STATIC void check_for_deinit(rp2pio_statemachine_obj_t *self) { if (common_hal_rp2pio_statemachine_deinited(self)) { raise_deinited_error(); } } //| def restart(self) -> None: //| """Resets this state machine, runs any init and enables the clock.""" // TODO: "and any others given. They must share an underlying PIO. An exception will be raised otherwise."" //| ... //| STATIC mp_obj_t rp2pio_statemachine_restart(mp_obj_t self_obj) { rp2pio_statemachine_obj_t *self = MP_OBJ_TO_PTR(self_obj); check_for_deinit(self); common_hal_rp2pio_statemachine_restart(self); return mp_const_none; } MP_DEFINE_CONST_FUN_OBJ_1(rp2pio_statemachine_restart_obj, rp2pio_statemachine_restart); //| def run(self, instructions: ReadableBuffer) -> None: //| """Runs all given instructions. They will likely be interleaved with //| in-memory instructions. Make sure this doesn't wait for input! //| //| This can be used to output internal state to the RX FIFO and then //| read with `readinto`.""" //| ... //| STATIC mp_obj_t rp2pio_statemachine_run(mp_obj_t self_obj, mp_obj_t instruction_obj) { rp2pio_statemachine_obj_t *self = MP_OBJ_TO_PTR(self_obj); check_for_deinit(self); mp_buffer_info_t bufinfo; mp_get_buffer_raise(instruction_obj, &bufinfo, MP_BUFFER_READ); common_hal_rp2pio_statemachine_run(self, bufinfo.buf, bufinfo.len); return mp_const_none; } MP_DEFINE_CONST_FUN_OBJ_2(rp2pio_statemachine_run_obj, rp2pio_statemachine_run); //| def stop(self) -> None: //| """Stops the state machine clock. Use `restart` to enable it.""" //| ... //| STATIC mp_obj_t rp2pio_statemachine_stop(mp_obj_t self_obj) { rp2pio_statemachine_obj_t *self = MP_OBJ_TO_PTR(self_obj); check_for_deinit(self); common_hal_rp2pio_statemachine_stop(self); return mp_const_none; } MP_DEFINE_CONST_FUN_OBJ_1(rp2pio_statemachine_stop_obj, rp2pio_statemachine_stop); //| def write(self, buffer: ReadableBuffer, *, start: int = 0, end: Optional[int] = None) -> None: //| """Write the data contained in ``buffer`` to the state machine. If the buffer is empty, nothing happens. //| //| Writes to the FIFO will match the input buffer's element size. For example, bytearray elements //| will perform 8 bit writes to the PIO FIFO. The RP2040's memory bus will duplicate the value into //| the other byte positions. So, pulling more data in the PIO assembly will read the duplicated values. //| //| To perform 16 or 32 bits writes into the FIFO use an `array.array` with a type code of the desired //| size. //| //| :param ~circuitpython_typing.ReadableBuffer buffer: Write out the data in this buffer //| :param int start: Start of the slice of ``buffer`` to write out: ``buffer[start:end]`` //| :param int end: End of the slice; this index is not included. Defaults to ``len(buffer)``""" //| ... //| STATIC mp_obj_t rp2pio_statemachine_write(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { enum { ARG_buffer, ARG_start, ARG_end }; static const mp_arg_t allowed_args[] = { { MP_QSTR_buffer, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} }, { MP_QSTR_start, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} }, { MP_QSTR_end, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = INT_MAX} }, }; rp2pio_statemachine_obj_t *self = MP_OBJ_TO_PTR(pos_args[0]); check_for_deinit(self); mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); mp_buffer_info_t bufinfo; mp_get_buffer_raise(args[ARG_buffer].u_obj, &bufinfo, MP_BUFFER_READ); int32_t start = args[ARG_start].u_int; size_t length = bufinfo.len; normalize_buffer_bounds(&start, args[ARG_end].u_int, &length); if (length == 0) { return mp_const_none; } uint8_t *original_pointer = bufinfo.buf; int stride_in_bytes = mp_binary_get_size('@', bufinfo.typecode, NULL); if (stride_in_bytes > 4) { mp_raise_ValueError(translate("Buffer elements must be 4 bytes long or less")); } bool ok = common_hal_rp2pio_statemachine_write(self, ((uint8_t *)bufinfo.buf) + start, length, stride_in_bytes); if (mp_hal_is_interrupted()) { return mp_const_none; } if (!ok) { mp_raise_OSError(MP_EIO); } return mp_const_none; } MP_DEFINE_CONST_FUN_OBJ_KW(rp2pio_statemachine_write_obj, 2, rp2pio_statemachine_write); //| def continuous_write(self, buffer: Optional[ReadableBuffer], *, start: int = 0, end: Optional[int] = None) -> None: //| """Write the data contained in ``buffer`` to the state machine repeatedly until stopped. If the buffer is empty or None, an existing continuous_write is canceled. //| //| Writes to the FIFO will match the input buffer's element size. For example, bytearray elements //| will perform 8 bit writes to the PIO FIFO. The RP2040's memory bus will duplicate the value into //| the other byte positions. So, pulling more data in the PIO assembly will read the duplicated values. //| //| To perform 16 or 32 bits writes into the FIFO use an `array.array` with a type code of the desired //| size. //| //| To atomically change from one buffer to another, simply call //| `StateMachine.continuous_write` again with a different buffer. //| The call will only return once outputting the new buffer has started. //| //| If the buffer is modified while it is being written out, the updated //| values will be used. However, because of interactions between CPU //| writes, DMA and the PIO FIFO are complex, it is difficult to predict //| the result of modifying multiple values. Instead, alternate between //| a pair of buffers. //| //| :param ~circuitpython_typing.ReadableBuffer buffer: Write out the data in this buffer //| :param int start: Start of the slice of ``buffer`` to write out: ``buffer[start:end]`` //| :param int end: End of the slice; this index is not included. Defaults to ``len(buffer)``""" //| ... //| STATIC mp_obj_t rp2pio_statemachine_start_continuous_write(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { enum { ARG_buffer, ARG_start, ARG_end }; static const mp_arg_t allowed_args[] = { { MP_QSTR_buffer, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} }, { MP_QSTR_start, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} }, { MP_QSTR_end, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = INT_MAX} }, }; rp2pio_statemachine_obj_t *self = MP_OBJ_TO_PTR(pos_args[0]); check_for_deinit(self); mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); mp_buffer_info_t bufinfo = {}; if (args[ARG_buffer].u_obj != mp_const_none) { mp_get_buffer_raise(args[ARG_buffer].u_obj, &bufinfo, MP_BUFFER_READ); } int32_t start = args[ARG_start].u_int; size_t length = bufinfo.len; normalize_buffer_bounds(&start, args[ARG_end].u_int, &length); bool ok = true; if (length == 0) { ok = common_hal_rp2pio_statemachine_end_continuous_write(self); } else { uint8_t *original_pointer = bufinfo.buf; int stride_in_bytes = mp_binary_get_size('@', bufinfo.typecode, NULL); if (stride_in_bytes > 4) { mp_raise_ValueError(translate("Buffer elements must be 4 bytes long or less")); } ok = common_hal_rp2pio_statemachine_start_continuous_write(self, args[ARG_buffer].u_obj, ((uint8_t *)bufinfo.buf) + start, length, stride_in_bytes); } if (!ok) { mp_raise_OSError(MP_EIO); } return mp_const_none; } MP_DEFINE_CONST_FUN_OBJ_KW(rp2pio_statemachine_start_continuous_write_obj, 2, rp2pio_statemachine_start_continuous_write); //| def end_continuous_write(self) -> None: //| """Stop a continuous write, if one is in progress.""" //| STATIC mp_obj_t rp2pio_statemachine_obj_end_continuous_write(mp_obj_t self_in) { rp2pio_statemachine_obj_t *self = MP_OBJ_TO_PTR(self_in); bool ok = common_hal_rp2pio_statemachine_end_continuous_write(self); if (!ok) { mp_raise_OSError(MP_EIO); } return mp_const_none; } MP_DEFINE_CONST_FUN_OBJ_1(rp2pio_statemachine_end_continuous_write_obj, rp2pio_statemachine_obj_end_continuous_write); //| def readinto(self, buffer: WriteableBuffer, *, start: int = 0, end: Optional[int] = None) -> None: //| """Read into ``buffer``. If the number of bytes to read is 0, nothing happens. The buffer //| includes any data added to the fifo even if it was added before this was called. //| //| Reads from the FIFO will match the input buffer's element size. For example, bytearray elements //| will perform 8 bit reads from the PIO FIFO. The alignment within the 32 bit value depends on //| ``in_shift_right``. When ``in_shift_right`` is True, the upper N bits will be read. The lower //| bits will be read when ``in_shift_right`` is False. //| //| To perform 16 or 32 bits writes into the FIFO use an `array.array` with a type code of the desired //| size. //| //| :param ~circuitpython_typing.WriteableBuffer buffer: Read data into this buffer //| :param int start: Start of the slice of ``buffer`` to read into: ``buffer[start:end]`` //| :param int end: End of the slice; this index is not included. Defaults to ``len(buffer)``""" //| ... //| STATIC mp_obj_t rp2pio_statemachine_readinto(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { enum { ARG_buffer, ARG_start, ARG_end }; static const mp_arg_t allowed_args[] = { { MP_QSTR_buffer, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} }, { MP_QSTR_start, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} }, { MP_QSTR_end, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = INT_MAX} }, }; rp2pio_statemachine_obj_t *self = MP_OBJ_TO_PTR(pos_args[0]); check_for_deinit(self); mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); mp_buffer_info_t bufinfo; mp_get_buffer_raise(args[ARG_buffer].u_obj, &bufinfo, MP_BUFFER_WRITE); int32_t start = args[ARG_start].u_int; size_t length = bufinfo.len; normalize_buffer_bounds(&start, args[ARG_end].u_int, &length); if (length == 0) { return mp_const_none; } uint8_t *original_pointer = bufinfo.buf; int stride_in_bytes = mp_binary_get_size('@', bufinfo.typecode, NULL); if (stride_in_bytes > 4) { mp_raise_ValueError(translate("Buffer elements must be 4 bytes long or less")); } bool ok = common_hal_rp2pio_statemachine_readinto(self, ((uint8_t *)bufinfo.buf) + start, length, stride_in_bytes); if (!ok) { mp_raise_OSError(MP_EIO); } return mp_const_none; } MP_DEFINE_CONST_FUN_OBJ_KW(rp2pio_statemachine_readinto_obj, 2, rp2pio_statemachine_readinto); //| def write_readinto(self, buffer_out: ReadableBuffer, buffer_in: WriteableBuffer, *, out_start: int = 0, out_end: Optional[int] = None, in_start: int = 0, in_end: Optional[int] = None) -> None: //| """Write out the data in ``buffer_out`` while simultaneously reading data into ``buffer_in``. //| The lengths of the slices defined by ``buffer_out[out_start:out_end]`` and ``buffer_in[in_start:in_end]`` //| may be different. The function will return once both are filled. //| If buffer slice lengths are both 0, nothing happens. //| //| Data transfers to and from the FIFOs will match the corresponding buffer's element size. See //| `write` and `readinto` for details. //| //| To perform 16 or 32 bits writes into the FIFO use an `array.array` with a type code of the desired //| size. //| //| :param ~circuitpython_typing.ReadableBuffer buffer_out: Write out the data in this buffer //| :param ~circuitpython_typing.WriteableBuffer buffer_in: Read data into this buffer //| :param int out_start: Start of the slice of buffer_out to write out: ``buffer_out[out_start:out_end]`` //| :param int out_end: End of the slice; this index is not included. Defaults to ``len(buffer_out)`` //| :param int in_start: Start of the slice of ``buffer_in`` to read into: ``buffer_in[in_start:in_end]`` //| :param int in_end: End of the slice; this index is not included. Defaults to ``len(buffer_in)``""" //| ... //| STATIC mp_obj_t rp2pio_statemachine_write_readinto(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { enum { ARG_buffer_out, ARG_buffer_in, ARG_out_start, ARG_out_end, ARG_in_start, ARG_in_end }; static const mp_arg_t allowed_args[] = { { MP_QSTR_buffer_out, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} }, { MP_QSTR_buffer_in, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} }, { MP_QSTR_out_start, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} }, { MP_QSTR_out_end, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = INT_MAX} }, { MP_QSTR_in_start, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} }, { MP_QSTR_in_end, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = INT_MAX} }, }; rp2pio_statemachine_obj_t *self = MP_OBJ_TO_PTR(pos_args[0]); check_for_deinit(self); mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); mp_buffer_info_t buf_out_info; mp_get_buffer_raise(args[ARG_buffer_out].u_obj, &buf_out_info, MP_BUFFER_READ); int32_t out_start = args[ARG_out_start].u_int; size_t out_length = buf_out_info.len; normalize_buffer_bounds(&out_start, args[ARG_out_end].u_int, &out_length); mp_buffer_info_t buf_in_info; mp_get_buffer_raise(args[ARG_buffer_in].u_obj, &buf_in_info, MP_BUFFER_WRITE); int32_t in_start = args[ARG_in_start].u_int; size_t in_length = buf_in_info.len; normalize_buffer_bounds(&in_start, args[ARG_in_end].u_int, &in_length); if (out_length == 0 && in_length == 0) { return mp_const_none; } int in_stride_in_bytes = mp_binary_get_size('@', buf_in_info.typecode, NULL); if (in_stride_in_bytes > 4) { mp_raise_ValueError(translate("In-buffer elements must be <= 4 bytes long")); } int out_stride_in_bytes = mp_binary_get_size('@', buf_out_info.typecode, NULL); if (out_stride_in_bytes > 4) { mp_raise_ValueError(translate("Out-buffer elements must be <= 4 bytes long")); } bool ok = common_hal_rp2pio_statemachine_write_readinto(self, ((uint8_t *)buf_out_info.buf) + out_start, out_length, out_stride_in_bytes, ((uint8_t *)buf_in_info.buf) + in_start, in_length, in_stride_in_bytes); if (!ok) { mp_raise_OSError(MP_EIO); } return mp_const_none; } MP_DEFINE_CONST_FUN_OBJ_KW(rp2pio_statemachine_write_readinto_obj, 2, rp2pio_statemachine_write_readinto); //| def clear_rxfifo(self) -> None: //| """Clears any unread bytes in the rxfifo.""" //| ... //| STATIC mp_obj_t rp2pio_statemachine_obj_clear_rxfifo(mp_obj_t self_in) { rp2pio_statemachine_obj_t *self = MP_OBJ_TO_PTR(self_in); common_hal_rp2pio_statemachine_clear_rxfifo(self); return mp_const_none; } MP_DEFINE_CONST_FUN_OBJ_1(rp2pio_statemachine_clear_rxfifo_obj, rp2pio_statemachine_obj_clear_rxfifo); //| frequency: int //| """The actual state machine frequency. This may not match the frequency requested //| due to internal limitations.""" //| STATIC mp_obj_t rp2pio_statemachine_obj_get_frequency(mp_obj_t self_in) { rp2pio_statemachine_obj_t *self = MP_OBJ_TO_PTR(self_in); check_for_deinit(self); return MP_OBJ_NEW_SMALL_INT(common_hal_rp2pio_statemachine_get_frequency(self)); } MP_DEFINE_CONST_FUN_OBJ_1(rp2pio_statemachine_get_frequency_obj, rp2pio_statemachine_obj_get_frequency); STATIC mp_obj_t rp2pio_statemachine_obj_set_frequency(mp_obj_t self_in, mp_obj_t frequency) { rp2pio_statemachine_obj_t *self = MP_OBJ_TO_PTR(self_in); check_for_deinit(self); common_hal_rp2pio_statemachine_set_frequency(self, mp_obj_get_int(frequency)); return mp_const_none; } MP_DEFINE_CONST_FUN_OBJ_2(rp2pio_statemachine_set_frequency_obj, rp2pio_statemachine_obj_set_frequency); const mp_obj_property_t rp2pio_statemachine_frequency_obj = { .base.type = &mp_type_property, .proxy = {(mp_obj_t)&rp2pio_statemachine_get_frequency_obj, (mp_obj_t)&rp2pio_statemachine_set_frequency_obj, MP_ROM_NONE}, }; //| rxstall: bool //| """True when the state machine has stalled due to a full RX FIFO since the last //| `clear_rxfifo` call.""" //| STATIC mp_obj_t rp2pio_statemachine_obj_get_rxstall(mp_obj_t self_in) { rp2pio_statemachine_obj_t *self = MP_OBJ_TO_PTR(self_in); check_for_deinit(self); return MP_OBJ_NEW_SMALL_INT(common_hal_rp2pio_statemachine_get_rxstall(self)); } MP_DEFINE_CONST_FUN_OBJ_1(rp2pio_statemachine_get_rxstall_obj, rp2pio_statemachine_obj_get_rxstall); const mp_obj_property_t rp2pio_statemachine_rxstall_obj = { .base.type = &mp_type_property, .proxy = {(mp_obj_t)&rp2pio_statemachine_get_rxstall_obj, MP_ROM_NONE, MP_ROM_NONE}, }; //| in_waiting: int //| """The number of words available to readinto""" //| STATIC mp_obj_t rp2pio_statemachine_obj_get_in_waiting(mp_obj_t self_in) { rp2pio_statemachine_obj_t *self = MP_OBJ_TO_PTR(self_in); check_for_deinit(self); return MP_OBJ_NEW_SMALL_INT(common_hal_rp2pio_statemachine_get_in_waiting(self)); } MP_DEFINE_CONST_FUN_OBJ_1(rp2pio_statemachine_get_in_waiting_obj, rp2pio_statemachine_obj_get_in_waiting); const mp_obj_property_t rp2pio_statemachine_in_waiting_obj = { .base.type = &mp_type_property, .proxy = {(mp_obj_t)&rp2pio_statemachine_get_in_waiting_obj, MP_ROM_NONE, MP_ROM_NONE}, }; STATIC const mp_rom_map_elem_t rp2pio_statemachine_locals_dict_table[] = { { MP_ROM_QSTR(MP_QSTR_deinit), MP_ROM_PTR(&rp2pio_statemachine_deinit_obj) }, { MP_ROM_QSTR(MP_QSTR___enter__), MP_ROM_PTR(&default___enter___obj) }, { MP_ROM_QSTR(MP_QSTR___exit__), MP_ROM_PTR(&rp2pio_statemachine_obj___exit___obj) }, { MP_ROM_QSTR(MP_QSTR_stop), MP_ROM_PTR(&rp2pio_statemachine_stop_obj) }, { MP_ROM_QSTR(MP_QSTR_restart), MP_ROM_PTR(&rp2pio_statemachine_restart_obj) }, { MP_ROM_QSTR(MP_QSTR_run), MP_ROM_PTR(&rp2pio_statemachine_run_obj) }, { MP_ROM_QSTR(MP_QSTR_clear_rxfifo), MP_ROM_PTR(&rp2pio_statemachine_clear_rxfifo_obj) }, { MP_ROM_QSTR(MP_QSTR_readinto), MP_ROM_PTR(&rp2pio_statemachine_readinto_obj) }, { MP_ROM_QSTR(MP_QSTR_write), MP_ROM_PTR(&rp2pio_statemachine_write_obj) }, { MP_ROM_QSTR(MP_QSTR_write_readinto), MP_ROM_PTR(&rp2pio_statemachine_write_readinto_obj) }, { MP_ROM_QSTR(MP_QSTR_start_continuous_write), MP_ROM_PTR(&rp2pio_statemachine_start_continuous_write_obj) }, { MP_ROM_QSTR(MP_QSTR_end_continuous_write), MP_ROM_PTR(&rp2pio_statemachine_end_continuous_write_obj) }, { MP_ROM_QSTR(MP_QSTR_frequency), MP_ROM_PTR(&rp2pio_statemachine_frequency_obj) }, { MP_ROM_QSTR(MP_QSTR_rxstall), MP_ROM_PTR(&rp2pio_statemachine_rxstall_obj) }, { MP_ROM_QSTR(MP_QSTR_in_waiting), MP_ROM_PTR(&rp2pio_statemachine_in_waiting_obj) }, }; STATIC MP_DEFINE_CONST_DICT(rp2pio_statemachine_locals_dict, rp2pio_statemachine_locals_dict_table); const mp_obj_type_t rp2pio_statemachine_type = { { &mp_type_type }, .name = MP_QSTR_StateMachine, .make_new = rp2pio_statemachine_make_new, .locals_dict = (mp_obj_dict_t *)&rp2pio_statemachine_locals_dict, }; static rp2pio_statemachine_obj_t *validate_obj_is_statemachine(mp_obj_t obj) { if (!mp_obj_is_type(obj, &rp2pio_statemachine_type)) { mp_raise_TypeError_varg(translate("Expected a %q"), rp2pio_statemachine_type.name); } return MP_OBJ_TO_PTR(obj); }