#include "py/obj.h" #include "py/runtime.h" #include "shared-bindings/microcontroller/Pin.h" #include "samd/pins.h" #include "sam.h" STATIC mp_obj_t _bhb_read_adc(void); STATIC mp_obj_t _bhb_init_adc(void) { claim_pin(&pin_PB08); common_hal_never_reset_pin(&pin_PB08); /* Enable the APB clock for the ADC. */ PM->APBCMASK.reg |= PM_APBCMASK_ADC; /* Enable GCLK0 for the ADC */ GCLK->CLKCTRL.reg = GCLK_CLKCTRL_CLKEN | GCLK_CLKCTRL_GEN_GCLK0 | GCLK_CLKCTRL_ID_ADC; /* Wait for bus synchronization. */ while (GCLK->STATUS.bit.SYNCBUSY) { } ; uint32_t bias = (*((uint32_t *)ADC_FUSES_BIASCAL_ADDR) & ADC_FUSES_BIASCAL_Msk) >> ADC_FUSES_BIASCAL_Pos; uint32_t linearity = (*((uint32_t *)ADC_FUSES_LINEARITY_0_ADDR) & ADC_FUSES_LINEARITY_0_Msk) >> ADC_FUSES_LINEARITY_0_Pos; linearity |= ((*((uint32_t *)ADC_FUSES_LINEARITY_1_ADDR) & ADC_FUSES_LINEARITY_1_Msk) >> ADC_FUSES_LINEARITY_1_Pos) << 5; /* Wait for bus synchronization. */ while (ADC->STATUS.bit.SYNCBUSY) { } ; /* Write the calibration data. */ ADC->CALIB.reg = ADC_CALIB_BIAS_CAL(bias) | ADC_CALIB_LINEARITY_CAL(linearity); /* Use the internal VCC reference. This is 1/2 of what's on VCCA. since VCCA is 3.3v, this is 1.65v. */ ADC->REFCTRL.reg = ADC_REFCTRL_REFSEL_INTVCC1; /* Capture 64 samples. */ ADC->AVGCTRL.reg = ADC_AVGCTRL_SAMPLENUM_64 | ADC_AVGCTRL_ADJRES(4); /* Set the clock prescaler to 32, which is the same as the CircuitPython default. Set the resolution to 16 for averaging */ ADC->CTRLB.reg = ADC_CTRLB_PRESCALER_DIV32 | ADC_CTRLB_RESSEL_16BIT; /* Configure the input parameters. - GAIN_DIV2 means that the input voltage is halved. This is important because the voltage reference is 1/2 of VCCA. So if you want to measure 0-3.3v, you need to halve the input as well. - MUXNEG_GND means that the ADC should compare the input value to GND. - MUXPOS_PIN3 means that the ADC should read from AIN2, or PB08. */ ADC->INPUTCTRL.reg = ADC_INPUTCTRL_GAIN_DIV2 | ADC_INPUTCTRL_MUXNEG_GND | ADC_INPUTCTRL_MUXPOS_PIN2; /* Set PB08 as an input pin. */ PORT->Group[1].DIRCLR.reg = PORT_PB08; /* Enable the peripheral multiplexer for PB08. */ PORT->Group[1].PINCFG[8].reg |= PORT_PINCFG_PMUXEN; /* Set PB08 to function B which is analog input. */ PORT->Group[1].PMUX[4].reg |= PORT_PMUX_PMUXE_B; /* Wait for bus synchronization. */ while (ADC->STATUS.bit.SYNCBUSY) { } ; /* Enable the ADC. */ ADC->CTRLA.bit.ENABLE = true; /* Make one read and throw it away, as per the datasheet. */ _bhb_read_adc(); return mp_const_none; } STATIC mp_obj_t _bhb_read_adc(void) { /* Wait for bus synchronization. */ while (ADC->STATUS.bit.SYNCBUSY) { } ; /* Start the ADC using a software trigger. */ ADC->SWTRIG.bit.START = true; /* Wait for the result ready flag to be set. */ while (ADC->INTFLAG.bit.RESRDY == 0) { ; } /* Clear the flag. */ ADC->INTFLAG.reg = ADC_INTFLAG_RESRDY; /* Read the value. */ uint32_t result = ADC->RESULT.reg; return MP_OBJ_NEW_SMALL_INT(result); } STATIC MP_DEFINE_CONST_FUN_OBJ_0(_bhb_init_adc_obj, _bhb_init_adc); STATIC MP_DEFINE_CONST_FUN_OBJ_0(_bhb_read_adc_obj, _bhb_read_adc); STATIC const mp_rom_map_elem_t _bhb_module_globals_table[] = { { MP_ROM_QSTR(MP_QSTR___name__), MP_ROM_QSTR(MP_QSTR__bhb) }, { MP_ROM_QSTR(MP_QSTR_init_adc), MP_ROM_PTR(&_bhb_init_adc_obj) }, { MP_ROM_QSTR(MP_QSTR_read_adc), MP_ROM_PTR(&_bhb_read_adc_obj) }, }; STATIC MP_DEFINE_CONST_DICT(_bhb_module_globals, _bhb_module_globals_table); const mp_obj_module_t _bhb_user_cmodule = { .base = { &mp_type_module }, .globals = (mp_obj_dict_t *)&_bhb_module_globals, }; MP_REGISTER_MODULE(MP_QSTR__bhb, _bhb_user_cmodule, MODULE_BHB_ENABLED);