/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2020 microDev * Copyright (c) 2023 Bob Abeles * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include "shared-bindings/memorymap/AddressRange.h" #include "py/runtime.h" #include "hardware/regs/addressmap.h" // RP2 address map ranges, must be arranged in order by ascending start address addressmap_rp2_range_t rp2_ranges[] = { {(uint8_t *)ROM_BASE, 0x00004000, ROM}, // boot ROM {(uint8_t *)XIP_BASE, 0x00100000, XIP}, // XIP normal cache operation {(uint8_t *)XIP_NOALLOC_BASE, 0x00100000, XIP}, // XIP check for hit, no update on miss {(uint8_t *)XIP_NOCACHE_BASE, 0x00100000, XIP}, // XIP don't check for hit, no update on miss {(uint8_t *)XIP_NOCACHE_NOALLOC_BASE, 0x00100000, XIP}, // XIP bypass cache completely {(uint8_t *)XIP_CTRL_BASE, 0x00004000, IO}, // XIP control registers {(uint8_t *)XIP_SRAM_BASE, 0x00004000, SRAM}, // XIP SRAM 16KB XIP cache {(uint8_t *)XIP_SSI_BASE, 0x00004000, IO}, // XIP SSI registers {(uint8_t *)SRAM_BASE, 0x00042000, SRAM}, // SRAM 256KB striped plus 16KB contiguous {(uint8_t *)SRAM0_BASE, 0x00040000, SRAM}, // SRAM0 to SRAM3 256KB non-striped {(uint8_t *)SYSINFO_BASE, 0x00070000, IO}, // APB peripherals {(uint8_t *)DMA_BASE, 0x00004000, IO}, // DMA registers {(uint8_t *)USBCTRL_DPRAM_BASE, 0x00001000, SRAM}, // USB DPSRAM 4KB {(uint8_t *)USBCTRL_REGS_BASE, 0x00004000, IO}, // USB registers {(uint8_t *)PIO0_BASE, 0x00004000, IO}, // PIO0 registers {(uint8_t *)PIO1_BASE, 0x00004000, IO}, // PIO1 registers {(uint8_t *)SIO_BASE, 0x00001000, IO}, // SIO registers, no aliases {(uint8_t *)PPB_BASE, 0x00004000, IO} // PPB registers }; void common_hal_memorymap_addressrange_construct(memorymap_addressrange_obj_t *self, uint8_t *start_address, size_t length) { for (size_t i = 0; i < MP_ARRAY_SIZE(rp2_ranges); i++) { if (start_address <= rp2_ranges[i].start_address) { uint8_t *range_end_address = rp2_ranges[i].start_address + rp2_ranges[i].len - 1; uint8_t *end_address = start_address + length - 1; if (start_address > range_end_address || end_address > range_end_address) { break; } self->start_address = start_address; self->len = length; self->type = rp2_ranges[i].type; return; } } mp_raise_ValueError(translate("Address range not allowed")); } size_t common_hal_memorymap_addressrange_get_length(const memorymap_addressrange_obj_t *self) { return self->len; } void common_hal_memorymap_addressrange_set_bytes(const memorymap_addressrange_obj_t *self, size_t start_index, uint8_t *values, size_t len) { uint8_t *dest_addr = self->start_address + start_index; switch (self->type) { case SRAM: // Writes to SRAM may be arbitrary length and alignment. We use memcpy() which // may optimize aligned writes depending on CIRCUITPY_FULL_BUILD of the CP build. memcpy(dest_addr, values, len); break; case IO: if ((size_t)dest_addr & 0x03 || len & 0x03) { // Unaligned access or unaligned length not supported by RP2 for IO registers mp_raise_RuntimeError(translate("Unable to access unaligned IO register")); } else { // Aligned access and length, use 32-bit writes uint32_t *dest_addr32 = (uint32_t *)dest_addr; size_t access_count = len >> 2; for (size_t i = 0; i < access_count; i++) { *dest_addr32++ = ((uint32_t *)values)[i]; } } break; case XIP: case ROM: // XIP and ROM are read-only mp_raise_RuntimeError(translate("Unable to write to read-only memory")); break; } } void common_hal_memorymap_addressrange_get_bytes(const memorymap_addressrange_obj_t *self, size_t start_index, size_t len, uint8_t *values) { uint8_t *src_addr = self->start_address + start_index; switch (self->type) { case SRAM: case XIP: case ROM: // Reads from these sources may be arbitrary length and alignment. We use memcpy() // which may optimize aligned writes depending on CIRCUITPY_FULL_BUILD of the CP build. memcpy(values, src_addr, len); break; case IO: if ((size_t)src_addr & 0x03 || len & 0x03) { // Unaligned access or unaligned length not supported by RP2 for IO registers mp_raise_RuntimeError(translate("Unable to access unaligned IO register")); } else { // Aligned access and length, use 32-bit reads uint32_t *src_addr32 = (uint32_t *)src_addr; size_t access_count = len >> 2; for (size_t i = 0; i < access_count; i++) { ((uint32_t *)values)[i] = *src_addr32++; } } break; } }