/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2020 Scott Shawcroft for Adafruit Industries * Copyright (c) 2020 Artur Pacholec * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ /* * Copyright 2018 NXP * All rights reserved. * * SPDX-License-Identifier: BSD-3-Clause */ #include "supervisor/board.h" #include "supervisor/port.h" #include "fsl_device_registers.h" #if CIRCUITPY_AUDIOBUSIO #include "common-hal/audiobusio/__init__.h" #endif #include "common-hal/microcontroller/Pin.h" #include "common-hal/pwmio/PWMOut.h" #include "common-hal/rtc/RTC.h" #include "common-hal/busio/SPI.h" #include "shared-bindings/microcontroller/__init__.h" #if CIRCUITPY_PEW #include "shared-module/_pew/PewPew.h" #endif #include "reset.h" #include "supervisor/background_callback.h" #include "supervisor/linker.h" #include "supervisor/shared/tick.h" #include "clocks.h" #include "sdk/drivers/igpio/fsl_gpio.h" #include "sdk/drivers/lpuart/fsl_lpuart.h" // Device memories must be accessed in order. #define DEVICE 2 // Normal memory can have accesses reorder and prefetched. #define NORMAL 0 // Prevents instruction access. #define NO_EXECUTION 1 #define EXECUTION 0 // Shareable if the memory system manages coherency. This means shared between memory bus masters, // not just CPUs. #define NOT_SHAREABLE 0 #define SHAREABLE 1 // #define NOT_CACHEABLE 0 #define CACHEABLE 1 #define NOT_BUFFERABLE 0 #define BUFFERABLE 1 #define NO_SUBREGIONS 0 extern uint32_t _ld_flash_size; extern uint32_t _ld_stack_top; extern uint32_t __isr_vector[]; extern uint32_t _ld_ocram_start; extern uint32_t _ld_ocram_bss_start; extern uint32_t _ld_ocram_bss_size; extern uint32_t _ld_ocram_data_destination; extern uint32_t _ld_ocram_data_size; extern uint32_t _ld_ocram_data_flash_copy; extern uint32_t _ld_ocram_end; extern uint32_t _ld_dtcm_bss_start; extern uint32_t _ld_dtcm_bss_size; extern uint32_t _ld_dtcm_data_destination; extern uint32_t _ld_dtcm_data_size; extern uint32_t _ld_dtcm_data_flash_copy; extern uint32_t _ld_itcm_destination; extern uint32_t _ld_itcm_size; extern uint32_t _ld_itcm_flash_copy; extern uint32_t _ld_isr_destination; extern uint32_t _ld_isr_size; extern uint32_t _ld_isr_flash_copy; extern void main(void); // This replaces the Reset_Handler in startup_*.S and SystemInit in system_*.c. // Turn off optimize("no-tree-loop-distribute-patterns") so that this isn't replaced // by calls to memcpy because we're copying it over now. void Reset_Handler(void); __attribute__((used, naked, no_instrument_function, optimize("no-tree-loop-distribute-patterns"))) void Reset_Handler(void) { __disable_irq(); // Set the VTOR to the flash copy since we haven't copied it into RAM. SCB->VTOR = (uint32_t)&_ld_isr_flash_copy; __set_MSP((uint32_t)&_ld_stack_top); // Turn off any residual ITM outputs. ITM->TER = 0; /* Disable I cache and D cache */ SCB_DisableICache(); SCB_DisableDCache(); // Changing the FlexRAM must happen here where the stack is empty. If it is in a function call, // then the return will jump to an invalid address. // Configure FlexRAM. The e is one block of ITCM (0b11) and DTCM (0b10). The rest is two OCRAM // (0b01). We shift in zeroes for all unimplemented banks. uint32_t flexram_config = (0xe5555555) >> (32 - 2 * FSL_FEATURE_FLEXRAM_INTERNAL_RAM_TOTAL_BANK_NUMBERS); // imxrt1176 splits the config across two registers. #ifdef IOMUXC_GPR_GPR17_FLEXRAM_BANK_CFG_LOW_MASK IOMUXC_GPR->GPR17 = flexram_config & IOMUXC_GPR_GPR17_FLEXRAM_BANK_CFG_LOW_MASK; IOMUXC_GPR->GPR18 = (flexram_config >> 16) & IOMUXC_GPR_GPR18_FLEXRAM_BANK_CFG_HIGH_MASK; #else IOMUXC_GPR->GPR17 = flexram_config; #endif // Switch from FlexRAM fuse config to the IOMUXC values. IOMUXC_GPR->GPR16 |= IOMUXC_GPR_GPR16_FLEXRAM_BANK_CFG_SEL(1); // Let the core know the TCM sizes changed. #ifdef IOMUXC_GPR_GPR14_CM7_CFGDTCMSZ_MASK uint32_t current_gpr14 = IOMUXC_GPR->GPR14; current_gpr14 &= ~IOMUXC_GPR_GPR14_CM7_CFGDTCMSZ_MASK; current_gpr14 |= IOMUXC_GPR_GPR14_CM7_CFGDTCMSZ(0x6); current_gpr14 &= ~IOMUXC_GPR_GPR14_CM7_CFGITCMSZ_MASK; current_gpr14 |= IOMUXC_GPR_GPR14_CM7_CFGITCMSZ(0x6); IOMUXC_GPR->GPR14 = current_gpr14; #endif // Enable FlexRAM interrupts on invalid access. FLEXRAM->INT_STAT_EN = FLEXRAM_INT_STAT_EN_ITCM_ERR_STAT_EN(1) | FLEXRAM_INT_STAT_EN_DTCM_ERR_STAT_EN(1) | FLEXRAM_INT_STAT_EN_OCRAM_ERR_STAT_EN(1); #if ((__FPU_PRESENT == 1) && (__FPU_USED == 1)) SCB->CPACR |= ((3UL << 10 * 2) | (3UL << 11 * 2)); /* set CP10, CP11 Full Access */ #endif /* ((__FPU_PRESENT == 1) && (__FPU_USED == 1)) */ /* Disable Watchdog Power Down Counter */ #if defined(RTWDOG) WDOG1->WMCR &= ~WDOG_WMCR_PDE_MASK; WDOG2->WMCR &= ~WDOG_WMCR_PDE_MASK; /* Watchdog disable */ WDOG1->WCR &= ~WDOG_WCR_WDE_MASK; WDOG2->WCR &= ~WDOG_WCR_WDE_MASK; RTWDOG->CNT = 0xD928C520U; /* 0xD928C520U is the update key */ RTWDOG->TOVAL = 0xFFFF; RTWDOG->CS = (uint32_t)((RTWDOG->CS) & ~RTWDOG_CS_EN_MASK) | RTWDOG_CS_UPDATE_MASK; #endif #if defined(RTWDOG3) if ((WDOG1->WCR & WDOG_WCR_WDE_MASK) != 0U) { WDOG1->WCR &= ~(uint16_t)WDOG_WCR_WDE_MASK; } if ((WDOG2->WCR & WDOG_WCR_WDE_MASK) != 0U) { WDOG2->WCR &= ~(uint16_t)WDOG_WCR_WDE_MASK; } if ((RTWDOG3->CS & RTWDOG_CS_CMD32EN_MASK) != 0U) { RTWDOG3->CNT = 0xD928C520U; /* 0xD928C520U is the update key */ } else { RTWDOG3->CNT = 0xC520U; RTWDOG3->CNT = 0xD928U; } RTWDOG3->TOVAL = 0xFFFF; RTWDOG3->CS = (uint32_t)((RTWDOG3->CS) & ~RTWDOG_CS_EN_MASK) | RTWDOG_CS_UPDATE_MASK; if ((RTWDOG4->CS & RTWDOG_CS_CMD32EN_MASK) != 0U) { RTWDOG4->CNT = 0xD928C520U; /* 0xD928C520U is the update key */ } else { RTWDOG4->CNT = 0xC520U; RTWDOG4->CNT = 0xD928U; } RTWDOG4->TOVAL = 0xFFFF; RTWDOG4->CS = (uint32_t)((RTWDOG4->CS) & ~RTWDOG_CS_EN_MASK) | RTWDOG_CS_UPDATE_MASK; #endif /* Disable Systick which might be enabled by bootrom */ if (SysTick->CTRL & SysTick_CTRL_ENABLE_Msk) { SysTick->CTRL &= ~SysTick_CTRL_ENABLE_Msk; } /* Disable MPU */ ARM_MPU_Disable(); // Copy all of the itcm code to run from ITCM. Do this while the MPU is disabled because we write // protect it. for (uint32_t i = 0; i < ((size_t)&_ld_itcm_size) / 4; i++) { (&_ld_itcm_destination)[i] = (&_ld_itcm_flash_copy)[i]; } for (uint32_t i = 0; i < ((size_t)&_ld_isr_size) / 4; i++) { (&_ld_isr_destination)[i] = (&_ld_isr_flash_copy)[i]; } // Now that we've copied the ISR table over, use that VTOR. SCB->VTOR = (uint32_t)&_ld_isr_destination; // The first number in RBAR is the region number. When searching for a policy, the region with // the highest number wins. If none match, then the default policy set at enable applies. // This is an undocumented region and is likely more registers. MPU->RBAR = ARM_MPU_RBAR(8, 0xC0000000U); MPU->RASR = ARM_MPU_RASR(EXECUTION, ARM_MPU_AP_FULL, DEVICE, NOT_SHAREABLE, NOT_CACHEABLE, NOT_BUFFERABLE, NO_SUBREGIONS, ARM_MPU_REGION_SIZE_512MB); // This is the SEMC region where external RAM and 8+ flash would live. Disable for now, even though the EVKs have stuff here. MPU->RBAR = ARM_MPU_RBAR(9, 0x80000000U); MPU->RASR = ARM_MPU_RASR(NO_EXECUTION, ARM_MPU_AP_NONE, DEVICE, NOT_SHAREABLE, NOT_CACHEABLE, NOT_BUFFERABLE, NO_SUBREGIONS, ARM_MPU_REGION_SIZE_1GB); // FlexSPI2 is 0x70000000 // This the first portion (1MB, 2MB or 4MB) of flash is the bootloader and CircuitPython read-only data. #if !defined(FlexSPI_AMBA_BASE) #define FlexSPI_AMBA_BASE FlexSPI1_AMBA_BASE #endif MPU->RBAR = ARM_MPU_RBAR(10, FlexSPI_AMBA_BASE); uint32_t region_size = ARM_MPU_REGION_SIZE_32B; uint32_t code_size = ((uint32_t)&_ld_filesystem_start) - FlexSPI_AMBA_BASE; while (code_size > (1u << (region_size + 1))) { region_size += 1; } MPU->RASR = ARM_MPU_RASR(EXECUTION, ARM_MPU_AP_FULL, NORMAL, NOT_SHAREABLE, CACHEABLE, BUFFERABLE, NO_SUBREGIONS, region_size); // The remainder of flash is the fat filesystem which could have code on it too. Make sure that // we set the region to the minimal size so that bad data doesn't get speculatively fetched. // Thanks to Damien for the tip! region_size = ARM_MPU_REGION_SIZE_32B; uint32_t filesystem_size = &_ld_filesystem_end - &_ld_filesystem_start; while (filesystem_size > (1u << (region_size + 1))) { region_size += 1; } // Mask out as much of the remainder as we can. For example on an 8MB flash, 7MB are for the // filesystem. The region_size here must be a power of 2 so it is 8MB. Using the subregion mask // we can ignore 1/8th size chunks. So, we ignore the last 1MB using the subregion. uint32_t remainder = (1u << (region_size + 1)) - filesystem_size; uint32_t subregion_size = (1u << (region_size + 1)) / 8; uint8_t subregion_mask = (0xff00 >> (remainder / subregion_size)) & 0xff; MPU->RBAR = ARM_MPU_RBAR(11, (size_t)&_ld_filesystem_start); MPU->RASR = ARM_MPU_RASR(EXECUTION, ARM_MPU_AP_FULL, NORMAL, NOT_SHAREABLE, CACHEABLE, BUFFERABLE, subregion_mask, region_size); // This the ITCM. Set it to read-only because we've loaded everything already and it's easy to // accidentally write the wrong value to 0x00000000 (aka NULL). MPU->RBAR = ARM_MPU_RBAR(12, 0x00000000U); MPU->RASR = ARM_MPU_RASR(EXECUTION, ARM_MPU_AP_RO, NORMAL, NOT_SHAREABLE, CACHEABLE, BUFFERABLE, NO_SUBREGIONS, ARM_MPU_REGION_SIZE_32KB); // This the DTCM. MPU->RBAR = ARM_MPU_RBAR(13, 0x20000000U); MPU->RASR = ARM_MPU_RASR(EXECUTION, ARM_MPU_AP_FULL, NORMAL, NOT_SHAREABLE, CACHEABLE, BUFFERABLE, NO_SUBREGIONS, ARM_MPU_REGION_SIZE_32KB); // This is OCRAM. We mark it as shareable so that it isn't cached. This makes USB work at the // cost of 1/4 speed OCRAM accesses. It will leave more room for caching data from the flash // too which might be a net win. MPU->RBAR = ARM_MPU_RBAR(14, ((uint32_t)&_ld_ocram_start)); MPU->RASR = ARM_MPU_RASR(NO_EXECUTION, ARM_MPU_AP_FULL, NORMAL, NOT_SHAREABLE, CACHEABLE, BUFFERABLE, NO_SUBREGIONS, ARM_MPU_REGION_SIZE_512KB); #if IMXRT10XX // We steal 64k from FlexRAM for ITCM and DTCM so disable those memory regions here. // We use 64k from FlexRAM for ITCM and DTCM so disable those memory regions here. MPU->RBAR = ARM_MPU_RBAR(15, ((uint32_t)&_ld_ocram_end)); MPU->RASR = ARM_MPU_RASR(EXECUTION, ARM_MPU_AP_FULL, NORMAL, NOT_SHAREABLE, CACHEABLE, BUFFERABLE, 0x80, ARM_MPU_REGION_SIZE_512KB); #else // On the iMX RT 11xx OCRAM is not flexram (for now). So no need to mask it off. #endif /* Enable MPU */ ARM_MPU_Enable(MPU_CTRL_PRIVDEFENA_Msk); /* We're done mucking with memory so enable I cache and D cache */ SCB_EnableDCache(); SCB_EnableICache(); // Copy all of the data to run from DTCM. for (uint32_t i = 0; i < ((size_t)&_ld_dtcm_data_size) / 4; i++) { (&_ld_dtcm_data_destination)[i] = (&_ld_dtcm_data_flash_copy)[i]; } // Clear DTCM bss. for (uint32_t i = 0; i < ((size_t)&_ld_dtcm_bss_size) / 4; i++) { (&_ld_dtcm_bss_start)[i] = 0; } // Copy all of the data to run from OCRAM. for (uint32_t i = 0; i < ((size_t)&_ld_ocram_data_size) / 4; i++) { (&_ld_ocram_data_destination)[i] = (&_ld_ocram_data_flash_copy)[i]; } // Clear OCRAM bss. for (uint32_t i = 0; i < ((size_t)&_ld_ocram_bss_size) / 4; i++) { (&_ld_ocram_bss_start)[i] = 0; } __enable_irq(); main(); } void __attribute__((no_instrument_function, section(".itcm.profile_enter"), long_call)) __cyg_profile_func_enter(void *this_fn, void *call_site) { if ((ITM->TER & (1 << 3)) == 0) { return; } uint32_t addr = (uint32_t)this_fn; while (ITM->PORT[3U].u32 == 0UL) { // addr |= 1; } ITM->PORT[3].u32 = addr; } void __attribute__((no_instrument_function, section(".itcm.profile_exit"), long_call)) __cyg_profile_func_exit(void *this_fn, void *call_site) { if ((ITM->TER & (1 << 4)) == 0) { return; } uint32_t addr = (uint32_t)this_fn; while (ITM->PORT[4U].u32 == 0UL) { // addr |= 1; } ITM->PORT[4].u32 = addr; } safe_mode_t port_init(void) { #if IMXRT10XX CLOCK_SetMode(kCLOCK_ModeRun); #endif clocks_init(); // Turn on the DWT so that neopixel_write can use CYCCNT for timing. CoreDebug->DEMCR |= CoreDebug_DEMCR_TRCENA_Msk; DWT->CTRL = 0x2 << DWT_CTRL_SYNCTAP_Pos | DWT_CTRL_CYCCNTENA_Msk; // Enable SWO if needed. #if CIRCUITPY_SWO_TRACE // Turn on the 528 MHz clock to the TPIU. CLOCK_EnableClock(kCLOCK_Trace); /* Make these edits*/ /* Set TRACE_PODF. */ CLOCK_SetDiv(kCLOCK_TraceDiv, 0); /* Make these edits*/ /* Set Trace clock source. */ CLOCK_SetMux(kCLOCK_TraceMux, 0); /* Make these edits*/ ITM->TCR = ITM_TCR_TSENA_Msk | ITM_TCR_ITMENA_Msk | ITM_TCR_SYNCENA_Msk | ITM_TCR_DWTENA_Msk; // Run at 2.75 mbaud. CP2102N says it can do up to 3. // Base clock is 528 mhz (not 500 like the core). // TPI->ACPR = 191; // Run at 1 mbaud so that USB isn't bottlenecked. TPI->ACPR = 527; TPI->SPPR = 0x2; // NRZ aka UART TPI->FFCR = 0; IOMUXC_SetPinMux( /* Add these lines*/ IOMUXC_GPIO_AD_09_ARM_TRACE_SWO, 0U); IOMUXC_SetPinConfig( /* Add these lines*/ IOMUXC_GPIO_AD_09_ARM_TRACE_SWO, 0x00F9U); // Enable ports 0-4: // * 0 is serial output // * // * 3 is addresses of functions beginning. // * 4 is addresses of functions ending. ITM->TER |= 0x1f; ITM->PORT[0].u8 = 'C'; ITM->PORT[0].u8 = 'P'; ITM->PORT[0].u8 = '\n'; #endif // Set all peripheral interrupt priorities to the lowest priority by default. for (uint16_t i = 0; i < NUMBER_OF_INT_VECTORS; i++) { NVIC_SetPriority(i, (1UL << __NVIC_PRIO_BITS) - 1UL); } #ifdef MIMXRT1042_SERIES #define USB_OTG1_IRQn USB_OTG_IRQn #endif NVIC_SetPriority(USB_OTG1_IRQn, 1); #ifdef USBPHY2 NVIC_SetPriority(USB_OTG2_IRQn, 1); #endif NVIC_SetPriority(FLEXRAM_IRQn, 0); NVIC_EnableIRQ(FLEXRAM_IRQn); // Priorities 8+ will be disabled during flash operations. To run during // flash operations, ensure all code is in RAM (not flash) and set the // priority < 8. #if CIRCUITPY_RTC rtc_init(); #endif // Always enable the SNVS interrupt. The GPC won't wake us up unless at least one interrupt is // enabled. It won't occur very often so it'll be low overhead. #if IMXRT11XX NVIC_EnableIRQ(SNVS_HP_NON_TZ_IRQn); #else NVIC_EnableIRQ(SNVS_HP_WRAPPER_IRQn); #endif #if IMXRT11XX /* Save SRSR to another register so we can read it later. */ SRC->GPR[11] = SRC->SRSR; SRC->SRSR = 0xFFFFFFFFU; if ((SRC->GPR[11] & SRC_SRSR_M7_LOCKUP_M7_MASK) != 0) { return SAFE_MODE_HARD_FAULT; } #endif // Note that `reset_port` CANNOT GO HERE, unlike other ports, because `board_init` hasn't been // run yet, which uses `never_reset` to protect critical pins from being reset by `reset_port`. if (board_requests_safe_mode()) { return SAFE_MODE_USER; } return SAFE_MODE_NONE; } void reset_port(void) { #if CIRCUITPY_BUSIO spi_reset(); #endif #if CIRCUITPY_AUDIOIO audio_dma_reset(); audioout_reset(); #endif #if CIRCUITPY_AUDIOBUSIO i2s_reset(); #endif #if CIRCUITPY_TOUCHIO && CIRCUITPY_TOUCHIO_USE_NATIVE touchin_reset(); #endif // eic_reset(); #if CIRCUITPY_PWMIO reset_all_flexpwm(); #endif #if CIRCUITPY_RTC rtc_reset(); #endif #if CIRCUITPY_PEW pew_reset(); #endif // reset_event_system(); reset_all_pins(); } void reset_to_bootloader(void) { DBL_TAP_REG = DBL_TAP_MAGIC; reset(); } void PLACE_IN_ITCM(reset_cpu)(void) { reset(); } extern uint32_t _ld_heap_start, _ld_heap_end, _ld_stack_top, _ld_stack_bottom; uint32_t *port_stack_get_limit(void) { return &_ld_stack_bottom; } uint32_t *port_stack_get_top(void) { return &_ld_stack_top; } uint32_t *port_heap_get_bottom(void) { return &_ld_heap_start; } // Get heap top address uint32_t *port_heap_get_top(void) { return &_ld_heap_end; } // Place the word into the low power section of the SNVS. void PLACE_IN_ITCM(port_set_saved_word)(uint32_t value) { SNVS->LPGPR[1] = value; } uint32_t port_get_saved_word(void) { return SNVS->LPGPR[1]; } uint64_t port_get_raw_ticks(uint8_t *subticks) { uint64_t ticks = 0; uint64_t next_ticks = 1; while (ticks != next_ticks) { ticks = next_ticks; next_ticks = ((uint64_t)SNVS->HPRTCMR) << 32 | SNVS->HPRTCLR; } if (subticks != NULL) { *subticks = ticks % 32; } return ticks / 32; } #if IMXRT10XX void SNVS_HP_WRAPPER_IRQHandler(void); __attribute__((used)) void PLACE_IN_ITCM(SNVS_HP_WRAPPER_IRQHandler)(void) { #else void SNVS_HP_NON_TZ_IRQHandler(void); __attribute__((used)) void PLACE_IN_ITCM(SNVS_HP_NON_TZ_IRQHandler)(void) { #endif if ((SNVS->HPSR & SNVS_HPSR_PI_MASK) != 0) { supervisor_tick(); SNVS->HPSR = SNVS_HPSR_PI_MASK; } if ((SNVS->HPSR & SNVS_HPSR_HPTA_MASK) != 0) { SNVS->HPSR = SNVS_HPSR_HPTA_MASK; } } // Enable 1/1024 second tick. void port_enable_tick(void) { uint32_t hpcr = SNVS->HPCR; hpcr &= ~SNVS_HPCR_PI_FREQ_MASK; SNVS->HPCR = hpcr | SNVS_HPCR_PI_FREQ(5) | SNVS_HPCR_PI_EN_MASK; } // Disable 1/1024 second tick. void port_disable_tick(void) { SNVS->HPCR &= ~SNVS_HPCR_PI_EN_MASK; } void port_interrupt_after_ticks(uint32_t ticks) { uint8_t subticks; uint64_t current_ticks = port_get_raw_ticks(&subticks); current_ticks += ticks; SNVS->HPCR &= ~SNVS_HPCR_HPTA_EN_MASK; // Wait for the alarm to be disabled. while ((SNVS->HPCR & SNVS_HPCR_HPTA_EN_MASK) != 0) { } SNVS->HPTAMR = current_ticks >> (32 - 5); SNVS->HPTALR = current_ticks << 5 | subticks; SNVS->HPCR |= SNVS_HPCR_HPTA_EN_MASK; } void port_idle_until_interrupt(void) { // App note here: https://www.nxp.com/docs/en/application-note/AN12085.pdf // Currently I have disabled the setting into wait mode as this impacts lots of different // subsystems and it is unclear if you can or should set it generically without having // a better understanding of user intent. For example by default it will kill PWM // when in this mode, unless PWM_CTRL2_WAITEN_MASK is set, and even with this set // it may not work properly if the same timer/subtimer is trying to PWM on multiple channels. // Maybe at later date, revisit after we have a better understanding on things like which // timers it impacts and how each subsystem is configured. // Clear the FPU interrupt because it can prevent us from sleeping. if (__get_FPSCR() & ~(0x9f)) { __set_FPSCR(__get_FPSCR() & ~(0x9f)); (void)__get_FPSCR(); } common_hal_mcu_disable_interrupts(); if (!background_callback_pending()) { #if IMXRT11XX NVIC_ClearPendingIRQ(SNVS_HP_NON_TZ_IRQn); #else NVIC_ClearPendingIRQ(SNVS_HP_WRAPPER_IRQn); #endif __WFI(); } common_hal_mcu_enable_interrupts(); } // Catch faults where the memory access violates MPU settings. void MemManage_Handler(void); __attribute__((used)) void PLACE_IN_ITCM(MemManage_Handler)(void) { reset_into_safe_mode(SAFE_MODE_HARD_FAULT); while (true) { asm ("nop;"); } } void BusFault_Handler(void); __attribute__((used)) void PLACE_IN_ITCM(BusFault_Handler)(void) { reset_into_safe_mode(SAFE_MODE_HARD_FAULT); while (true) { asm ("nop;"); } } void UsageFault_Handler(void); __attribute__((used)) void PLACE_IN_ITCM(UsageFault_Handler)(void) { reset_into_safe_mode(SAFE_MODE_HARD_FAULT); while (true) { asm ("nop;"); } } // Default fault handler. void HardFault_Handler(void); __attribute__((used)) void PLACE_IN_ITCM(HardFault_Handler)(void) { reset_into_safe_mode(SAFE_MODE_HARD_FAULT); while (true) { asm ("nop;"); } } // Catch access errors to FlexRAM (if the MPU didn't catch it first.) void FLEXRAM_IRQHandler(void); __attribute__((used)) void PLACE_IN_ITCM(FLEXRAM_IRQHandler)(void) { reset_into_safe_mode(SAFE_MODE_HARD_FAULT); while (true) { asm ("nop;"); } }