/* * This file is part of the Micro Python project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2013-2015 Damien P. George * Copyright (c) 2016 Glenn Ruben Bakke * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include "modmachine.h" #include "py/gc.h" #include "py/runtime.h" #include "py/mphal.h" #include "extmod/machine_mem.h" #include "extmod/machine_pulse.h" #include "extmod/machine_i2c.h" #include "lib/utils/pyexec.h" #include "lib/oofatfs/ff.h" #include "lib/oofatfs/diskio.h" #include "gccollect.h" #include "pin.h" #include "uart.h" #include "spi.h" #include "i2c.h" #include "timer.h" #if MICROPY_PY_MACHINE_HW_PWM #include "pwm.h" #endif #if MICROPY_PY_MACHINE_ADC #include "adc.h" #endif #if MICROPY_PY_MACHINE_TEMP #include "temp.h" #endif #if MICROPY_PY_MACHINE_RTC #include "rtc.h" #endif #define PYB_RESET_HARD (0) #define PYB_RESET_WDT (1) #define PYB_RESET_SOFT (2) #define PYB_RESET_LOCKUP (3) #define PYB_RESET_POWER_ON (16) #define PYB_RESET_LPCOMP (17) #define PYB_RESET_DIF (18) #define PYB_RESET_NFC (19) STATIC uint32_t reset_cause; void machine_init(void) { uint32_t state = NRF_POWER->RESETREAS; if (state & POWER_RESETREAS_RESETPIN_Msk) { reset_cause = PYB_RESET_HARD; } else if (state & POWER_RESETREAS_DOG_Msk) { reset_cause = PYB_RESET_WDT; } else if (state & POWER_RESETREAS_SREQ_Msk) { reset_cause = PYB_RESET_SOFT; } else if (state & POWER_RESETREAS_LOCKUP_Msk) { reset_cause = PYB_RESET_LOCKUP; } else if (state & POWER_RESETREAS_OFF_Msk) { reset_cause = PYB_RESET_POWER_ON; } else if (state & POWER_RESETREAS_LPCOMP_Msk) { reset_cause = PYB_RESET_LPCOMP; } else if (state & POWER_RESETREAS_DIF_Msk) { reset_cause = PYB_RESET_DIF; #if NRF52 } else if (state & POWER_RESETREAS_NFC_Msk) { reset_cause = PYB_RESET_NFC; #endif } // clear reset reason NRF_POWER->RESETREAS = (1 << reset_cause); } // machine.info([dump_alloc_table]) // Print out lots of information about the board. STATIC mp_obj_t machine_info(mp_uint_t n_args, const mp_obj_t *args) { // to print info about memory { printf("_etext=%p\n", &_etext); printf("_sidata=%p\n", &_sidata); printf("_sdata=%p\n", &_sdata); printf("_edata=%p\n", &_edata); printf("_sbss=%p\n", &_sbss); printf("_ebss=%p\n", &_ebss); printf("_estack=%p\n", &_estack); printf("_ram_start=%p\n", &_ram_start); printf("_heap_start=%p\n", &_heap_start); printf("_heap_end=%p\n", &_heap_end); printf("_ram_end=%p\n", &_ram_end); } // qstr info { mp_uint_t n_pool, n_qstr, n_str_data_bytes, n_total_bytes; qstr_pool_info(&n_pool, &n_qstr, &n_str_data_bytes, &n_total_bytes); printf("qstr:\n n_pool=" UINT_FMT "\n n_qstr=" UINT_FMT "\n n_str_data_bytes=" UINT_FMT "\n n_total_bytes=" UINT_FMT "\n", n_pool, n_qstr, n_str_data_bytes, n_total_bytes); } // GC info { gc_info_t info; gc_info(&info); printf("GC:\n"); printf(" " UINT_FMT " total\n", info.total); printf(" " UINT_FMT " : " UINT_FMT "\n", info.used, info.free); printf(" 1=" UINT_FMT " 2=" UINT_FMT " m=" UINT_FMT "\n", info.num_1block, info.num_2block, info.max_block); } if (n_args == 1) { // arg given means dump gc allocation table gc_dump_alloc_table(); } return mp_const_none; } MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(machine_info_obj, 0, 1, machine_info); // Resets the pyboard in a manner similar to pushing the external RESET button. STATIC mp_obj_t machine_reset(void) { NVIC_SystemReset(); return mp_const_none; } MP_DEFINE_CONST_FUN_OBJ_0(machine_reset_obj, machine_reset); STATIC mp_obj_t machine_soft_reset(void) { pyexec_system_exit = PYEXEC_FORCED_EXIT; nlr_raise(mp_obj_new_exception(&mp_type_SystemExit)); } MP_DEFINE_CONST_FUN_OBJ_0(machine_soft_reset_obj, machine_soft_reset); STATIC mp_obj_t machine_sleep(void) { __WFE(); return mp_const_none; } MP_DEFINE_CONST_FUN_OBJ_0(machine_sleep_obj, machine_sleep); STATIC mp_obj_t machine_deepsleep(void) { __WFI(); return mp_const_none; } MP_DEFINE_CONST_FUN_OBJ_0(machine_deepsleep_obj, machine_deepsleep); STATIC mp_obj_t machine_reset_cause(void) { return MP_OBJ_NEW_SMALL_INT(reset_cause); } STATIC MP_DEFINE_CONST_FUN_OBJ_0(machine_reset_cause_obj, machine_reset_cause); STATIC mp_obj_t machine_enable_irq(void) { #ifndef BLUETOOTH_SD __enable_irq(); #else #endif return mp_const_none; } MP_DEFINE_CONST_FUN_OBJ_0(machine_enable_irq_obj, machine_enable_irq); // Resets the pyboard in a manner similar to pushing the external RESET button. STATIC mp_obj_t machine_disable_irq(void) { #ifndef BLUETOOTH_SD __disable_irq(); #else #endif return mp_const_none; } MP_DEFINE_CONST_FUN_OBJ_0(machine_disable_irq_obj, machine_disable_irq); STATIC const mp_map_elem_t machine_module_globals_table[] = { { MP_OBJ_NEW_QSTR(MP_QSTR___name__), MP_OBJ_NEW_QSTR(MP_QSTR_umachine) }, { MP_OBJ_NEW_QSTR(MP_QSTR_info), (mp_obj_t)&machine_info_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_reset), (mp_obj_t)&machine_reset_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_soft_reset), (mp_obj_t)&machine_soft_reset_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_enable_irq), (mp_obj_t)&machine_enable_irq_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_disable_irq), (mp_obj_t)&machine_disable_irq_obj }, #if MICROPY_HW_ENABLE_RNG { MP_OBJ_NEW_QSTR(MP_QSTR_rng), (mp_obj_t)&pyb_rng_get_obj }, #endif { MP_OBJ_NEW_QSTR(MP_QSTR_sleep), (mp_obj_t)&machine_sleep_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_deepsleep), (mp_obj_t)&machine_deepsleep_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_reset_cause), (mp_obj_t)&machine_reset_cause_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_Pin), (mp_obj_t)&pin_type }, { MP_OBJ_NEW_QSTR(MP_QSTR_UART), (mp_obj_t)&machine_hard_uart_type }, #if MICROPY_PY_MACHINE_HW_SPI { MP_OBJ_NEW_QSTR(MP_QSTR_SPI), (mp_obj_t)&machine_hard_spi_type }, #endif #if MICROPY_PY_MACHINE_I2C { MP_OBJ_NEW_QSTR(MP_QSTR_I2C), (mp_obj_t)&machine_i2c_type }, #endif #if MICROPY_PY_MACHINE_ADC { MP_OBJ_NEW_QSTR(MP_QSTR_ADC), (mp_obj_t)&machine_adc_type }, #endif #if MICROPY_PY_MACHINE_RTC { MP_OBJ_NEW_QSTR(MP_QSTR_RTC), (mp_obj_t)&machine_rtc_type }, #endif #if MICROPY_PY_MACHINE_TIMER { MP_OBJ_NEW_QSTR(MP_QSTR_Timer), (mp_obj_t)&machine_timer_type }, #endif #if MICROPY_PY_MACHINE_HW_PWM { MP_OBJ_NEW_QSTR(MP_QSTR_PWM), (mp_obj_t)&machine_hard_pwm_type }, #endif #if MICROPY_PY_MACHINE_TEMP { MP_OBJ_NEW_QSTR(MP_QSTR_Temp), (mp_obj_t)&machine_temp_type }, #endif { MP_OBJ_NEW_QSTR(MP_QSTR_HARD_RESET), MP_OBJ_NEW_SMALL_INT(PYB_RESET_HARD) }, { MP_OBJ_NEW_QSTR(MP_QSTR_WDT_RESET), MP_OBJ_NEW_SMALL_INT(PYB_RESET_WDT) }, { MP_OBJ_NEW_QSTR(MP_QSTR_SOFT_RESET), MP_OBJ_NEW_SMALL_INT(PYB_RESET_SOFT) }, { MP_OBJ_NEW_QSTR(MP_QSTR_LOCKUP_RESET), MP_OBJ_NEW_SMALL_INT(PYB_RESET_LOCKUP) }, { MP_OBJ_NEW_QSTR(MP_QSTR_PWRON_RESET), MP_OBJ_NEW_SMALL_INT(PYB_RESET_POWER_ON) }, { MP_OBJ_NEW_QSTR(MP_QSTR_LPCOMP_RESET), MP_OBJ_NEW_SMALL_INT(PYB_RESET_LPCOMP) }, { MP_OBJ_NEW_QSTR(MP_QSTR_DEBUG_IF_RESET), MP_OBJ_NEW_SMALL_INT(PYB_RESET_DIF) }, #if NRF52 { MP_OBJ_NEW_QSTR(MP_QSTR_NFC_RESET), MP_OBJ_NEW_SMALL_INT(PYB_RESET_NFC) }, #endif }; STATIC MP_DEFINE_CONST_DICT(machine_module_globals, machine_module_globals_table); const mp_obj_module_t machine_module = { .base = { &mp_type_module }, .globals = (mp_obj_dict_t*)&machine_module_globals, };