/* * This file is part of the Micro Python project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2018 Scott Shawcroft for Adafruit Industries * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "shared-bindings/displayio/Bitmap.h" #include #include "py/runtime.h" #include "py/gc.h" enum { ALIGN_BITS = 8 * sizeof(uint32_t) }; static int stride(uint32_t width, uint32_t bits_per_value) { uint32_t row_width = width * bits_per_value; // align to uint32_t return (row_width + ALIGN_BITS - 1) / ALIGN_BITS; } void common_hal_displayio_bitmap_construct(displayio_bitmap_t *self, uint32_t width, uint32_t height, uint32_t bits_per_value) { common_hal_displayio_bitmap_construct_from_buffer(self, width, height, bits_per_value, NULL, false); } void common_hal_displayio_bitmap_construct_from_buffer(displayio_bitmap_t *self, uint32_t width, uint32_t height, uint32_t bits_per_value, uint32_t *data, bool read_only) { self->width = width; self->height = height; self->stride = stride(width, bits_per_value); if (!data) { data = m_malloc(self->stride * height * sizeof(uint32_t), false); self->data_alloc = true; } else { self->data_alloc = false; } self->data = data; self->read_only = read_only; self->bits_per_value = bits_per_value; if (bits_per_value > 8 && bits_per_value != 16 && bits_per_value != 32) { mp_raise_NotImplementedError(translate("Invalid bits per value")); } // Division and modulus can be slow because it has to handle any integer. We know bits_per_value // is a power of two. We divide and mod by bits_per_value to compute the offset into the byte // array. So, we can the offset computation to simplify to a shift for division and mask for mod. self->x_shift = 0; // Used to divide the index by the number of pixels per word. Its used in a // shift which effectively divides by 2 ** x_shift. uint32_t power_of_two = 1; while (power_of_two < ALIGN_BITS / bits_per_value) { self->x_shift++; power_of_two <<= 1; } self->x_mask = (1u << self->x_shift) - 1u; // Used as a modulus on the x value self->bitmask = (1u << bits_per_value) - 1u; self->dirty_area.x1 = 0; self->dirty_area.x2 = width; self->dirty_area.y1 = 0; self->dirty_area.y2 = height; } void common_hal_displayio_bitmap_deinit(displayio_bitmap_t *self) { if (self->data_alloc) { gc_free(self->data); } self->data = NULL; } bool common_hal_displayio_bitmap_deinited(displayio_bitmap_t *self) { return self->data == NULL; } uint16_t common_hal_displayio_bitmap_get_height(displayio_bitmap_t *self) { return self->height; } uint16_t common_hal_displayio_bitmap_get_width(displayio_bitmap_t *self) { return self->width; } uint32_t common_hal_displayio_bitmap_get_bits_per_value(displayio_bitmap_t *self) { return self->bits_per_value; } uint32_t common_hal_displayio_bitmap_get_pixel(displayio_bitmap_t *self, int16_t x, int16_t y) { if (x >= self->width || x < 0 || y >= self->height || y < 0) { return 0; } int32_t row_start = y * self->stride; uint32_t bytes_per_value = self->bits_per_value / 8; if (bytes_per_value < 1) { uint32_t word = self->data[row_start + (x >> self->x_shift)]; return (word >> (sizeof(uint32_t) * 8 - ((x & self->x_mask) + 1) * self->bits_per_value)) & self->bitmask; } else { uint32_t *row = self->data + row_start; if (bytes_per_value == 1) { return ((uint8_t *)row)[x]; } else if (bytes_per_value == 2) { return ((uint16_t *)row)[x]; } else if (bytes_per_value == 4) { return ((uint32_t *)row)[x]; } } return 0; } void displayio_bitmap_set_dirty_area(displayio_bitmap_t *self, const displayio_area_t *dirty_area) { if (self->read_only) { mp_raise_RuntimeError(translate("Read-only")); } displayio_area_t area = *dirty_area; displayio_area_canon(&area); displayio_area_union(&area, &self->dirty_area, &area); displayio_area_t bitmap_area = {0, 0, self->width, self->height, NULL}; displayio_area_compute_overlap(&area, &bitmap_area, &self->dirty_area); } void displayio_bitmap_write_pixel(displayio_bitmap_t *self, int16_t x, int16_t y, uint32_t value) { // Writes the color index value into a pixel position // Must update the dirty area separately // Don't write if out of area if (0 > x || x >= self->width || 0 > y || y >= self->height) { return; } // Update one pixel of data int32_t row_start = y * self->stride; uint32_t bytes_per_value = self->bits_per_value / 8; if (bytes_per_value < 1) { uint32_t bit_position = (sizeof(uint32_t) * 8 - ((x & self->x_mask) + 1) * self->bits_per_value); uint32_t index = row_start + (x >> self->x_shift); uint32_t word = self->data[index]; word &= ~(self->bitmask << bit_position); word |= (value & self->bitmask) << bit_position; self->data[index] = word; } else { uint32_t *row = self->data + row_start; if (bytes_per_value == 1) { ((uint8_t *)row)[x] = value; } else if (bytes_per_value == 2) { ((uint16_t *)row)[x] = value; } else if (bytes_per_value == 4) { ((uint32_t *)row)[x] = value; } } } void common_hal_displayio_bitmap_blit(displayio_bitmap_t *self, int16_t x, int16_t y, displayio_bitmap_t *source, int16_t x1, int16_t y1, int16_t x2, int16_t y2, uint32_t skip_index, bool skip_index_none) { // Copy region of "source" bitmap into "self" bitmap at location x,y in the "self" // If skip_value is encountered in the source bitmap, it will not be copied. // If skip_value is `None`, then all pixels are copied. // This function assumes input checks were performed for pixel index entries. // Update the dirty area int16_t dirty_x_max = (x + (x2 - x1)); if (dirty_x_max > self->width) { dirty_x_max = self->width; } int16_t dirty_y_max = y + (y2 - y1); if (dirty_y_max > self->height) { dirty_y_max = self->height; } displayio_area_t a = { x, y, dirty_x_max, dirty_y_max, NULL}; displayio_bitmap_set_dirty_area(self, &a); bool x_reverse = false; bool y_reverse = false; // Add reverse direction option to protect blitting of self bitmap back into self bitmap if (x > x1) { x_reverse = true; } if (y > y1) { y_reverse = true; } // simplest version - use internal functions for get/set pixels for (int16_t i = 0; i < (x2 - x1); i++) { const int xs_index = x_reverse ? ((x2) - i - 1) : x1 + i; // x-index into the source bitmap const int xd_index = x_reverse ? ((x + (x2 - x1)) - i - 1) : x + i; // x-index into the destination bitmap if ((xd_index >= 0) && (xd_index < self->width)) { for (int16_t j = 0; j < (y2 - y1); j++) { const int ys_index = y_reverse ? ((y2) - j - 1) : y1 + j; // y-index into the source bitmap const int yd_index = y_reverse ? ((y + (y2 - y1)) - j - 1) : y + j; // y-index into the destination bitmap if ((yd_index >= 0) && (yd_index < self->height)) { uint32_t value = common_hal_displayio_bitmap_get_pixel(source, xs_index, ys_index); if ((skip_index_none) || (value != skip_index)) { // write if skip_value_none is True displayio_bitmap_write_pixel(self, xd_index, yd_index, value); } } } } } } void common_hal_displayio_bitmap_set_pixel(displayio_bitmap_t *self, int16_t x, int16_t y, uint32_t value) { // update the dirty region displayio_area_t a = {x, y, x + 1, y + 1, NULL}; displayio_bitmap_set_dirty_area(self, &a); // write the pixel displayio_bitmap_write_pixel(self, x, y, value); } displayio_area_t *displayio_bitmap_get_refresh_areas(displayio_bitmap_t *self, displayio_area_t *tail) { if (self->dirty_area.x1 == self->dirty_area.x2) { return tail; } self->dirty_area.next = tail; return &self->dirty_area; } void displayio_bitmap_finish_refresh(displayio_bitmap_t *self) { self->dirty_area.x1 = 0; self->dirty_area.x2 = 0; } void common_hal_displayio_bitmap_fill(displayio_bitmap_t *self, uint32_t value) { displayio_area_t a = {0, 0, self->width, self->height, NULL}; displayio_bitmap_set_dirty_area(self, &a); // build the packed word uint32_t word = 0; for (uint8_t i = 0; i < 32 / self->bits_per_value; i++) { word |= (value & self->bitmask) << (32 - ((i + 1) * self->bits_per_value)); } // copy it in for (uint32_t i = 0; i < self->stride * self->height; i++) { self->data[i] = word; } } int common_hal_displayio_bitmap_get_buffer(displayio_bitmap_t *self, mp_buffer_info_t *bufinfo, mp_uint_t flags) { if ((flags & MP_BUFFER_WRITE) && self->read_only) { return 1; } bufinfo->len = self->stride * self->height * sizeof(uint32_t); bufinfo->buf = self->data; switch (self->bits_per_value) { case 32: bufinfo->typecode = 'I'; break; case 16: bufinfo->typecode = 'H'; break; default: bufinfo->typecode = 'B'; break; } return 0; }