/* * This file is part of the Micro Python project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2013, 2014 Damien P. George * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include #include #include "py/nlr.h" #include "py/obj.h" #include "py/parsenum.h" #include "py/runtime0.h" #include "py/runtime.h" #if MICROPY_PY_BUILTINS_COMPLEX #include #include "py/formatfloat.h" typedef struct _mp_obj_complex_t { mp_obj_base_t base; mp_float_t real; mp_float_t imag; } mp_obj_complex_t; STATIC void complex_print(const mp_print_t *print, mp_obj_t o_in, mp_print_kind_t kind) { (void)kind; mp_obj_complex_t *o = MP_OBJ_TO_PTR(o_in); #if MICROPY_FLOAT_IMPL == MICROPY_FLOAT_IMPL_FLOAT char buf[16]; const int precision = 7; #else char buf[32]; const int precision = 16; #endif if (o->real == 0) { mp_format_float(o->imag, buf, sizeof(buf), 'g', precision, '\0'); mp_printf(print, "%sj", buf); } else { mp_format_float(o->real, buf, sizeof(buf), 'g', precision, '\0'); mp_printf(print, "(%s", buf); if (o->imag >= 0 || isnan(o->imag)) { mp_print_str(print, "+"); } mp_format_float(o->imag, buf, sizeof(buf), 'g', precision, '\0'); mp_printf(print, "%sj)", buf); } } STATIC mp_obj_t complex_make_new(const mp_obj_type_t *type_in, size_t n_args, size_t n_kw, const mp_obj_t *args) { (void)type_in; mp_arg_check_num(n_args, n_kw, 0, 2, false); switch (n_args) { case 0: return mp_obj_new_complex(0, 0); case 1: if (MP_OBJ_IS_STR(args[0])) { // a string, parse it size_t l; const char *s = mp_obj_str_get_data(args[0], &l); return mp_parse_num_decimal(s, l, true, true, NULL); } else if (MP_OBJ_IS_TYPE(args[0], &mp_type_complex)) { // a complex, just return it return args[0]; } else { // something else, try to cast it to a complex return mp_obj_new_complex(mp_obj_get_float(args[0]), 0); } case 2: default: { mp_float_t real, imag; if (MP_OBJ_IS_TYPE(args[0], &mp_type_complex)) { mp_obj_complex_get(args[0], &real, &imag); } else { real = mp_obj_get_float(args[0]); imag = 0; } if (MP_OBJ_IS_TYPE(args[1], &mp_type_complex)) { mp_float_t real2, imag2; mp_obj_complex_get(args[1], &real2, &imag2); real -= imag2; imag += real2; } else { imag += mp_obj_get_float(args[1]); } return mp_obj_new_complex(real, imag); } } } STATIC mp_obj_t complex_unary_op(mp_uint_t op, mp_obj_t o_in) { mp_obj_complex_t *o = MP_OBJ_TO_PTR(o_in); switch (op) { case MP_UNARY_OP_BOOL: return mp_obj_new_bool(o->real != 0 || o->imag != 0); case MP_UNARY_OP_POSITIVE: return o_in; case MP_UNARY_OP_NEGATIVE: return mp_obj_new_complex(-o->real, -o->imag); default: return MP_OBJ_NULL; // op not supported } } STATIC mp_obj_t complex_binary_op(mp_uint_t op, mp_obj_t lhs_in, mp_obj_t rhs_in) { mp_obj_complex_t *lhs = MP_OBJ_TO_PTR(lhs_in); return mp_obj_complex_binary_op(op, lhs->real, lhs->imag, rhs_in); } STATIC void complex_attr(mp_obj_t self_in, qstr attr, mp_obj_t *dest) { if (dest[0] != MP_OBJ_NULL) { // not load attribute return; } mp_obj_complex_t *self = MP_OBJ_TO_PTR(self_in); if (attr == MP_QSTR_real) { dest[0] = mp_obj_new_float(self->real); } else if (attr == MP_QSTR_imag) { dest[0] = mp_obj_new_float(self->imag); } } const mp_obj_type_t mp_type_complex = { { &mp_type_type }, .name = MP_QSTR_complex, .print = complex_print, .make_new = complex_make_new, .unary_op = complex_unary_op, .binary_op = complex_binary_op, .attr = complex_attr, }; mp_obj_t mp_obj_new_complex(mp_float_t real, mp_float_t imag) { mp_obj_complex_t *o = m_new_obj(mp_obj_complex_t); o->base.type = &mp_type_complex; o->real = real; o->imag = imag; return MP_OBJ_FROM_PTR(o); } void mp_obj_complex_get(mp_obj_t self_in, mp_float_t *real, mp_float_t *imag) { assert(MP_OBJ_IS_TYPE(self_in, &mp_type_complex)); mp_obj_complex_t *self = MP_OBJ_TO_PTR(self_in); *real = self->real; *imag = self->imag; } mp_obj_t mp_obj_complex_binary_op(mp_uint_t op, mp_float_t lhs_real, mp_float_t lhs_imag, mp_obj_t rhs_in) { mp_float_t rhs_real, rhs_imag; mp_obj_get_complex(rhs_in, &rhs_real, &rhs_imag); // can be any type, this function will convert to float (if possible) switch (op) { case MP_BINARY_OP_ADD: case MP_BINARY_OP_INPLACE_ADD: lhs_real += rhs_real; lhs_imag += rhs_imag; break; case MP_BINARY_OP_SUBTRACT: case MP_BINARY_OP_INPLACE_SUBTRACT: lhs_real -= rhs_real; lhs_imag -= rhs_imag; break; case MP_BINARY_OP_MULTIPLY: case MP_BINARY_OP_INPLACE_MULTIPLY: { mp_float_t real; multiply: real = lhs_real * rhs_real - lhs_imag * rhs_imag; lhs_imag = lhs_real * rhs_imag + lhs_imag * rhs_real; lhs_real = real; break; } case MP_BINARY_OP_FLOOR_DIVIDE: case MP_BINARY_OP_INPLACE_FLOOR_DIVIDE: nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_TypeError, "can't do truncated division of a complex number")); case MP_BINARY_OP_TRUE_DIVIDE: case MP_BINARY_OP_INPLACE_TRUE_DIVIDE: if (rhs_imag == 0) { if (rhs_real == 0) { mp_raise_msg(&mp_type_ZeroDivisionError, "complex division by zero"); } lhs_real /= rhs_real; lhs_imag /= rhs_real; } else if (rhs_real == 0) { mp_float_t real = lhs_imag / rhs_imag; lhs_imag = -lhs_real / rhs_imag; lhs_real = real; } else { mp_float_t rhs_len_sq = rhs_real*rhs_real + rhs_imag*rhs_imag; rhs_real /= rhs_len_sq; rhs_imag /= -rhs_len_sq; goto multiply; } break; case MP_BINARY_OP_POWER: case MP_BINARY_OP_INPLACE_POWER: { // z1**z2 = exp(z2*ln(z1)) // = exp(z2*(ln(|z1|)+i*arg(z1))) // = exp( (x2*ln1 - y2*arg1) + i*(y2*ln1 + x2*arg1) ) // = exp(x3 + i*y3) // = exp(x3)*(cos(y3) + i*sin(y3)) mp_float_t abs1 = MICROPY_FLOAT_C_FUN(sqrt)(lhs_real*lhs_real + lhs_imag*lhs_imag); if (abs1 == 0) { if (rhs_imag == 0 && rhs_real >= 0) { lhs_real = (rhs_real == 0); rhs_real = 0; } else { mp_raise_msg(&mp_type_ZeroDivisionError, "0.0 to a complex power"); } } else { mp_float_t ln1 = MICROPY_FLOAT_C_FUN(log)(abs1); mp_float_t arg1 = MICROPY_FLOAT_C_FUN(atan2)(lhs_imag, lhs_real); mp_float_t x3 = rhs_real * ln1 - rhs_imag * arg1; mp_float_t y3 = rhs_imag * ln1 + rhs_real * arg1; mp_float_t exp_x3 = MICROPY_FLOAT_C_FUN(exp)(x3); lhs_real = exp_x3 * MICROPY_FLOAT_C_FUN(cos)(y3); lhs_imag = exp_x3 * MICROPY_FLOAT_C_FUN(sin)(y3); } break; } case MP_BINARY_OP_EQUAL: return mp_obj_new_bool(lhs_real == rhs_real && lhs_imag == rhs_imag); default: return MP_OBJ_NULL; // op not supported } return mp_obj_new_complex(lhs_real, lhs_imag); } #endif