/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2019 Scott Shawcroft for Adafruit Industries * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "shared-bindings/displayio/EPaperDisplay.h" #include "py/gc.h" #include "py/runtime.h" #include "shared-bindings/displayio/ColorConverter.h" #include "shared-bindings/displayio/FourWire.h" #include "shared-bindings/displayio/I2CDisplay.h" #if CIRCUITPY_PARALLELDISPLAY #include "shared-bindings/paralleldisplay/ParallelBus.h" #endif #include "shared-bindings/microcontroller/Pin.h" #include "shared-bindings/time/__init__.h" #include "shared-module/displayio/__init__.h" #include "supervisor/shared/display.h" #include "supervisor/shared/tick.h" #include "supervisor/usb.h" #include #include void common_hal_displayio_epaperdisplay_construct(displayio_epaperdisplay_obj_t *self, mp_obj_t bus, const uint8_t *start_sequence, uint16_t start_sequence_len, const uint8_t *stop_sequence, uint16_t stop_sequence_len, uint16_t width, uint16_t height, uint16_t ram_width, uint16_t ram_height, int16_t colstart, int16_t rowstart, uint16_t rotation, uint16_t set_column_window_command, uint16_t set_row_window_command, uint16_t set_current_column_command, uint16_t set_current_row_command, uint16_t write_black_ram_command, bool black_bits_inverted, uint16_t write_color_ram_command, bool color_bits_inverted, uint32_t highlight_color, uint16_t refresh_display_command, mp_float_t refresh_time, const mcu_pin_obj_t *busy_pin, bool busy_state, mp_float_t seconds_per_frame, bool chip_select, bool grayscale) { if (highlight_color != 0x000000) { self->core.colorspace.tricolor = true; self->core.colorspace.tricolor_hue = displayio_colorconverter_compute_hue(highlight_color); self->core.colorspace.tricolor_luma = displayio_colorconverter_compute_luma(highlight_color); } displayio_display_core_construct(&self->core, bus, width, height, ram_width, ram_height, colstart, rowstart, rotation, 1, true, true, 1, true, true); self->set_column_window_command = set_column_window_command; self->set_row_window_command = set_row_window_command; self->set_current_column_command = set_current_column_command; self->set_current_row_command = set_current_row_command; self->write_black_ram_command = write_black_ram_command; self->black_bits_inverted = black_bits_inverted; self->write_color_ram_command = write_color_ram_command; self->color_bits_inverted = color_bits_inverted; self->refresh_display_command = refresh_display_command; self->refresh_time = refresh_time * 1000; self->busy_state = busy_state; self->refreshing = false; self->milliseconds_per_frame = seconds_per_frame * 1000; self->chip_select = chip_select ? CHIP_SELECT_TOGGLE_EVERY_BYTE : CHIP_SELECT_UNTOUCHED; self->grayscale = grayscale; self->start_sequence = start_sequence; self->start_sequence_len = start_sequence_len; self->stop_sequence = stop_sequence; self->stop_sequence_len = stop_sequence_len; self->busy.base.type = &mp_type_NoneType; if (busy_pin != NULL) { self->busy.base.type = &digitalio_digitalinout_type; common_hal_digitalio_digitalinout_construct(&self->busy, busy_pin); common_hal_never_reset_pin(busy_pin); } // Clear the color memory if it isn't in use. if (highlight_color == 0x00 && write_color_ram_command != NO_COMMAND) { // TODO: Clear } // Set the group after initialization otherwise we may send pixels while we delay in // initialization. common_hal_displayio_epaperdisplay_show(self, &circuitpython_splash); } bool common_hal_displayio_epaperdisplay_show(displayio_epaperdisplay_obj_t *self, displayio_group_t *root_group) { return displayio_display_core_show(&self->core, root_group); } STATIC const displayio_area_t *displayio_epaperdisplay_get_refresh_areas(displayio_epaperdisplay_obj_t *self) { if (self->core.full_refresh) { self->core.area.next = NULL; return &self->core.area; } const displayio_area_t *first_area = NULL; if (self->core.current_group != NULL) { first_area = displayio_group_get_refresh_areas(self->core.current_group, NULL); } if (first_area != NULL && self->set_row_window_command == NO_COMMAND) { self->core.area.next = NULL; return &self->core.area; } return first_area; } uint16_t common_hal_displayio_epaperdisplay_get_width(displayio_epaperdisplay_obj_t *self) { return displayio_display_core_get_width(&self->core); } uint16_t common_hal_displayio_epaperdisplay_get_height(displayio_epaperdisplay_obj_t *self) { return displayio_display_core_get_height(&self->core); } STATIC void wait_for_busy(displayio_epaperdisplay_obj_t *self) { if (self->busy.base.type == &mp_type_NoneType) { return; } while (common_hal_digitalio_digitalinout_get_value(&self->busy) == self->busy_state) { RUN_BACKGROUND_TASKS; } } STATIC void send_command_sequence(displayio_epaperdisplay_obj_t *self, bool should_wait_for_busy, const uint8_t *sequence, uint32_t sequence_len) { uint32_t i = 0; while (i < sequence_len) { const uint8_t *cmd = sequence + i; uint8_t data_size = *(cmd + 1); bool delay = (data_size & DELAY) != 0; data_size &= ~DELAY; const uint8_t *data = cmd + 2; displayio_display_core_begin_transaction(&self->core); self->core.send(self->core.bus, DISPLAY_COMMAND, self->chip_select, cmd, 1); self->core.send(self->core.bus, DISPLAY_DATA, self->chip_select, data, data_size); displayio_display_core_end_transaction(&self->core); uint16_t delay_length_ms = 0; if (delay) { data_size++; delay_length_ms = *(cmd + 1 + data_size); if (delay_length_ms == 255) { delay_length_ms = 500; } } common_hal_time_delay_ms(delay_length_ms); if (should_wait_for_busy) { wait_for_busy(self); } i += 2 + data_size; } } void displayio_epaperdisplay_change_refresh_mode_parameters(displayio_epaperdisplay_obj_t *self, mp_buffer_info_t *start_sequence, float seconds_per_frame) { self->start_sequence = (uint8_t *)start_sequence->buf; self->start_sequence_len = start_sequence->len; self->milliseconds_per_frame = seconds_per_frame * 1000; } STATIC void displayio_epaperdisplay_start_refresh(displayio_epaperdisplay_obj_t *self) { // run start sequence self->core.bus_reset(self->core.bus); send_command_sequence(self, true, self->start_sequence, self->start_sequence_len); displayio_display_core_start_refresh(&self->core); } uint32_t common_hal_displayio_epaperdisplay_get_time_to_refresh(displayio_epaperdisplay_obj_t *self) { if (self->core.last_refresh == 0) { return 0; } // Refresh at seconds per frame rate. uint32_t elapsed_time = supervisor_ticks_ms64() - self->core.last_refresh; if (elapsed_time > self->milliseconds_per_frame) { return 0; } return self->milliseconds_per_frame - elapsed_time; } STATIC void displayio_epaperdisplay_finish_refresh(displayio_epaperdisplay_obj_t *self) { // Actually refresh the display now that all pixel RAM has been updated. displayio_display_core_begin_transaction(&self->core); self->core.send(self->core.bus, DISPLAY_COMMAND, self->chip_select, &self->refresh_display_command, 1); displayio_display_core_end_transaction(&self->core); supervisor_enable_tick(); self->refreshing = true; displayio_display_core_finish_refresh(&self->core); } mp_obj_t common_hal_displayio_epaperdisplay_get_bus(displayio_epaperdisplay_obj_t *self) { return self->core.bus; } void common_hal_displayio_epaperdisplay_set_rotation(displayio_epaperdisplay_obj_t *self, int rotation) { bool transposed = (self->core.rotation == 90 || self->core.rotation == 270); bool will_transposed = (rotation == 90 || rotation == 270); if (transposed != will_transposed) { int tmp = self->core.width; self->core.width = self->core.height; self->core.height = tmp; } displayio_display_core_set_rotation(&self->core, rotation); if (self == &displays[0].epaper_display) { supervisor_stop_terminal(); supervisor_start_terminal(self->core.width, self->core.height); } if (self->core.current_group != NULL) { displayio_group_update_transform(self->core.current_group, &self->core.transform); } } uint16_t common_hal_displayio_epaperdisplay_get_rotation(displayio_epaperdisplay_obj_t *self) { return self->core.rotation; } STATIC bool displayio_epaperdisplay_refresh_area(displayio_epaperdisplay_obj_t *self, const displayio_area_t *area) { uint16_t buffer_size = 128; // In uint32_ts displayio_area_t clipped; // Clip the area to the display by overlapping the areas. If there is no overlap then we're done. if (!displayio_display_core_clip_area(&self->core, area, &clipped)) { return true; } uint16_t subrectangles = 1; uint16_t rows_per_buffer = displayio_area_height(&clipped); uint8_t pixels_per_word = (sizeof(uint32_t) * 8) / self->core.colorspace.depth; uint16_t pixels_per_buffer = displayio_area_size(&clipped); if (displayio_area_size(&clipped) > buffer_size * pixels_per_word) { rows_per_buffer = buffer_size * pixels_per_word / displayio_area_width(&clipped); if (rows_per_buffer == 0) { rows_per_buffer = 1; } subrectangles = displayio_area_height(&clipped) / rows_per_buffer; if (displayio_area_height(&clipped) % rows_per_buffer != 0) { subrectangles++; } pixels_per_buffer = rows_per_buffer * displayio_area_width(&clipped); buffer_size = pixels_per_buffer / pixels_per_word; if (pixels_per_buffer % pixels_per_word) { buffer_size += 1; } } // Allocated and shared as a uint32_t array so the compiler knows the // alignment everywhere. uint32_t buffer[buffer_size]; volatile uint32_t mask_length = (pixels_per_buffer / 32) + 1; uint32_t mask[mask_length]; uint8_t passes = 1; if (self->core.colorspace.tricolor || self->grayscale) { passes = 2; } for (uint8_t pass = 0; pass < passes; pass++) { uint16_t remaining_rows = displayio_area_height(&clipped); if (self->set_row_window_command != NO_COMMAND) { displayio_display_core_set_region_to_update(&self->core, self->set_column_window_command, self->set_row_window_command, self->set_current_column_command, self->set_current_row_command, false, self->chip_select, &clipped, false /* SH1107_addressing */); } uint8_t write_command = self->write_black_ram_command; if (pass == 1) { write_command = self->write_color_ram_command; } displayio_display_core_begin_transaction(&self->core); self->core.send(self->core.bus, DISPLAY_COMMAND, self->chip_select, &write_command, 1); displayio_display_core_end_transaction(&self->core); for (uint16_t j = 0; j < subrectangles; j++) { displayio_area_t subrectangle = { .x1 = clipped.x1, .y1 = clipped.y1 + rows_per_buffer * j, .x2 = clipped.x2, .y2 = clipped.y1 + rows_per_buffer * (j + 1) }; if (remaining_rows < rows_per_buffer) { subrectangle.y2 = subrectangle.y1 + remaining_rows; } remaining_rows -= rows_per_buffer; uint16_t subrectangle_size_bytes = displayio_area_size(&subrectangle) / (8 / self->core.colorspace.depth); memset(mask, 0, mask_length * sizeof(mask[0])); memset(buffer, 0, buffer_size * sizeof(buffer[0])); self->core.colorspace.grayscale = true; self->core.colorspace.grayscale_bit = 7; if (pass == 1) { if (self->grayscale) { // 4-color grayscale self->core.colorspace.grayscale_bit = 6; } else { // Tri-color self->core.colorspace.grayscale = false; } } displayio_display_core_fill_area(&self->core, &subrectangle, mask, buffer); // Invert it all. if ((pass == 1 && self->color_bits_inverted) || (pass == 0 && self->black_bits_inverted)) { for (uint16_t k = 0; k < buffer_size; k++) { buffer[k] = ~buffer[k]; } } if (!displayio_display_core_begin_transaction(&self->core)) { // Can't acquire display bus; skip the rest of the data. Try next display. return false; } self->core.send(self->core.bus, DISPLAY_DATA, self->chip_select, (uint8_t *)buffer, subrectangle_size_bytes); displayio_display_core_end_transaction(&self->core); // TODO(tannewt): Make refresh displays faster so we don't starve other // background tasks. #if CIRCUITPY_USB usb_background(); #endif } } return true; } bool common_hal_displayio_epaperdisplay_refresh(displayio_epaperdisplay_obj_t *self) { if (self->refreshing && self->busy.base.type == &digitalio_digitalinout_type) { if (common_hal_digitalio_digitalinout_get_value(&self->busy) != self->busy_state) { supervisor_disable_tick(); self->refreshing = false; // Run stop sequence but don't wait for busy because busy is set when sleeping. send_command_sequence(self, false, self->stop_sequence, self->stop_sequence_len); } else { return false; } } if (self->core.current_group == NULL) { return true; } // Refresh at seconds per frame rate. if (common_hal_displayio_epaperdisplay_get_time_to_refresh(self) > 0) { return false; } if (!displayio_display_core_bus_free(&self->core)) { // Can't acquire display bus; skip updating this display. Try next display. return false; } const displayio_area_t *current_area = displayio_epaperdisplay_get_refresh_areas(self); if (current_area == NULL) { return true; } displayio_epaperdisplay_start_refresh(self); while (current_area != NULL) { displayio_epaperdisplay_refresh_area(self, current_area); current_area = current_area->next; } displayio_epaperdisplay_finish_refresh(self); return true; } void displayio_epaperdisplay_background(displayio_epaperdisplay_obj_t *self) { if (self->refreshing) { bool refresh_done = false; if (self->busy.base.type == &digitalio_digitalinout_type) { bool busy = common_hal_digitalio_digitalinout_get_value(&self->busy); refresh_done = busy != self->busy_state; } else { refresh_done = supervisor_ticks_ms64() - self->core.last_refresh > self->refresh_time; } if (refresh_done) { supervisor_disable_tick(); self->refreshing = false; // Run stop sequence but don't wait for busy because busy is set when sleeping. send_command_sequence(self, false, self->stop_sequence, self->stop_sequence_len); } } } bool common_hal_displayio_epaperdisplay_get_busy(displayio_epaperdisplay_obj_t *self) { displayio_epaperdisplay_background(self); return self->refreshing; } void release_epaperdisplay(displayio_epaperdisplay_obj_t *self) { if (self->refreshing) { wait_for_busy(self); supervisor_disable_tick(); self->refreshing = false; // Run stop sequence but don't wait for busy because busy is set when sleeping. send_command_sequence(self, false, self->stop_sequence, self->stop_sequence_len); } release_display_core(&self->core); if (self->busy.base.type == &digitalio_digitalinout_type) { common_hal_digitalio_digitalinout_deinit(&self->busy); } } void displayio_epaperdisplay_collect_ptrs(displayio_epaperdisplay_obj_t *self) { displayio_display_core_collect_ptrs(&self->core); gc_collect_ptr((void *)self->start_sequence); gc_collect_ptr((void *)self->stop_sequence); } size_t maybe_refresh_epaperdisplay(void) { for (uint8_t i = 0; i < CIRCUITPY_DISPLAY_LIMIT; i++) { if (displays[i].epaper_display.base.type != &displayio_epaperdisplay_type || displays[i].epaper_display.core.current_group != &circuitpython_splash) { // Skip regular displays and those not showing the splash. continue; } displayio_epaperdisplay_obj_t *display = &displays[i].epaper_display; size_t time_to_refresh = common_hal_displayio_epaperdisplay_get_time_to_refresh(display); if (time_to_refresh > 0) { return time_to_refresh; } if (common_hal_displayio_epaperdisplay_refresh(display)) { return 0; } // If we could refresh but it failed, then we want to retry. return 1; } // Return 0 if no ePaper displays are available to pretend it was updated. return 0; }