/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2017 Dan Halbert for Adafruit Industries * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "py/runtime.h" #include "common-hal/microcontroller/Processor.h" #include "shared-bindings/microcontroller/ResetReason.h" #include "supervisor/shared/translate.h" #include "nrfx_saadc.h" #ifdef BLUETOOTH_SD #include "nrf_sdm.h" #endif #include "nrf.h" float common_hal_mcu_processor_get_temperature(void) { int32_t temp = 0; #ifdef BLUETOOTH_SD uint8_t sd_en = 0; (void) sd_softdevice_is_enabled(&sd_en); if (sd_en) { uint32_t err_code = sd_temp_get(&temp); if (err_code != NRF_SUCCESS) { mp_raise_OSError_msg(translate("Cannot get temperature")); } return temp / 4.0f; } // Fall through if SD not enabled. #endif NRF_TEMP->TASKS_START = 1; while (NRF_TEMP->EVENTS_DATARDY == 0) { } NRF_TEMP->EVENTS_DATARDY = 0; temp = NRF_TEMP->TEMP; NRF_TEMP->TASKS_STOP = 1; return temp / 4.0f; } uint32_t common_hal_mcu_processor_get_frequency(void) { return 64000000ul; } float common_hal_mcu_processor_get_voltage(void) { nrf_saadc_value_t value; const nrf_saadc_channel_config_t config = { .resistor_p = NRF_SAADC_RESISTOR_DISABLED, .resistor_n = NRF_SAADC_RESISTOR_DISABLED, .gain = NRF_SAADC_GAIN1_6, .reference = NRF_SAADC_REFERENCE_INTERNAL, .acq_time = NRF_SAADC_ACQTIME_10US, .mode = NRF_SAADC_MODE_SINGLE_ENDED, .burst = NRF_SAADC_BURST_DISABLED }; nrf_saadc_resolution_set(NRF_SAADC, NRF_SAADC_RESOLUTION_14BIT); nrf_saadc_oversample_set(NRF_SAADC, NRF_SAADC_OVERSAMPLE_DISABLED); nrf_saadc_enable(NRF_SAADC); for (uint32_t i = 0; i < SAADC_CH_NUM; i++) { nrf_saadc_channel_input_set(NRF_SAADC, i, NRF_SAADC_INPUT_DISABLED, NRF_SAADC_INPUT_DISABLED); } nrf_saadc_channel_init(NRF_SAADC, 0, &config); nrf_saadc_channel_input_set(NRF_SAADC, 0, NRF_SAADC_INPUT_VDD, NRF_SAADC_INPUT_VDD); nrf_saadc_buffer_init(NRF_SAADC, &value, 1); nrf_saadc_task_trigger(NRF_SAADC, NRF_SAADC_TASK_START); while (nrf_saadc_event_check(NRF_SAADC, NRF_SAADC_EVENT_STARTED) == 0) { } nrf_saadc_event_clear(NRF_SAADC, NRF_SAADC_EVENT_STARTED); nrf_saadc_task_trigger(NRF_SAADC, NRF_SAADC_TASK_SAMPLE); while (nrf_saadc_event_check(NRF_SAADC, NRF_SAADC_EVENT_END) == 0) { } nrf_saadc_event_clear(NRF_SAADC, NRF_SAADC_EVENT_END); nrf_saadc_task_trigger(NRF_SAADC, NRF_SAADC_TASK_STOP); while (nrf_saadc_event_check(NRF_SAADC, NRF_SAADC_EVENT_STOPPED) == 0) { } nrf_saadc_event_clear(NRF_SAADC, NRF_SAADC_EVENT_STOPPED); nrf_saadc_disable(NRF_SAADC); if (value < 0) { value = 0; } // The ADC reading we expect if VDD is 3.3V. #define NOMINAL_VALUE_3_3 (((3.3f/6)/0.6f)*16383) return (value/NOMINAL_VALUE_3_3) * 3.3f; } void common_hal_mcu_processor_get_uid(uint8_t raw_id[]) { for (int i=0; i<2; i++) { ((uint32_t*) raw_id)[i] = NRF_FICR->DEVICEID[i]; } } mcu_reset_reason_t common_hal_mcu_processor_get_reset_reason(void) { return RESET_REASON_POWER_ON; }