/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2013-2015 Damien P. George * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include #include #include #include #include "py/scope.h" #include "py/emit.h" #include "py/compile.h" #include "py/runtime.h" #include "py/asmbase.h" #if MICROPY_ENABLE_COMPILER // TODO need to mangle __attr names #define INVALID_LABEL (0xffff) typedef enum { // define rules with a compile function #define DEF_RULE(rule, comp, kind, ...) PN_##rule, #define DEF_RULE_NC(rule, kind, ...) #include "py/grammar.h" #undef DEF_RULE #undef DEF_RULE_NC PN_const_object, // special node for a constant, generic Python object // define rules without a compile function #define DEF_RULE(rule, comp, kind, ...) #define DEF_RULE_NC(rule, kind, ...) PN_##rule, #include "py/grammar.h" #undef DEF_RULE #undef DEF_RULE_NC } pn_kind_t; #define NEED_METHOD_TABLE MICROPY_EMIT_NATIVE #if NEED_METHOD_TABLE // we need a method table to do the lookup for the emitter functions #define EMIT(fun) (comp->emit_method_table->fun(comp->emit)) #define EMIT_ARG(fun, ...) (comp->emit_method_table->fun(comp->emit, __VA_ARGS__)) #define EMIT_LOAD_FAST(qst, local_num) (comp->emit_method_table->load_id.local(comp->emit, qst, local_num, MP_EMIT_IDOP_LOCAL_FAST)) #define EMIT_LOAD_GLOBAL(qst) (comp->emit_method_table->load_id.global(comp->emit, qst, MP_EMIT_IDOP_GLOBAL_GLOBAL)) #else // if we only have the bytecode emitter enabled then we can do a direct call to the functions #define EMIT(fun) (mp_emit_bc_##fun(comp->emit)) #define EMIT_ARG(fun, ...) (mp_emit_bc_##fun(comp->emit, __VA_ARGS__)) #define EMIT_LOAD_FAST(qst, local_num) (mp_emit_bc_load_local(comp->emit, qst, local_num, MP_EMIT_IDOP_LOCAL_FAST)) #define EMIT_LOAD_GLOBAL(qst) (mp_emit_bc_load_global(comp->emit, qst, MP_EMIT_IDOP_GLOBAL_GLOBAL)) #endif #if MICROPY_EMIT_NATIVE // define a macro to access external native emitter #if MICROPY_EMIT_X64 #define NATIVE_EMITTER(f) emit_native_x64_##f #elif MICROPY_EMIT_X86 #define NATIVE_EMITTER(f) emit_native_x86_##f #elif MICROPY_EMIT_THUMB #define NATIVE_EMITTER(f) emit_native_thumb_##f #elif MICROPY_EMIT_ARM #define NATIVE_EMITTER(f) emit_native_arm_##f #elif MICROPY_EMIT_XTENSA #define NATIVE_EMITTER(f) emit_native_xtensa_##f #else #error "unknown native emitter" #endif #endif #if MICROPY_EMIT_INLINE_ASM // define macros for inline assembler #if MICROPY_EMIT_INLINE_THUMB #define ASM_DECORATOR_QSTR MP_QSTR_asm_thumb #define ASM_EMITTER(f) emit_inline_thumb_##f #elif MICROPY_EMIT_INLINE_XTENSA #define ASM_DECORATOR_QSTR MP_QSTR_asm_xtensa #define ASM_EMITTER(f) emit_inline_xtensa_##f #else #error "unknown asm emitter" #endif #endif #define EMIT_INLINE_ASM(fun) (comp->emit_inline_asm_method_table->fun(comp->emit_inline_asm)) #define EMIT_INLINE_ASM_ARG(fun, ...) (comp->emit_inline_asm_method_table->fun(comp->emit_inline_asm, __VA_ARGS__)) // elements in this struct are ordered to make it compact typedef struct _compiler_t { qstr source_file; uint8_t is_repl; uint8_t pass; // holds enum type pass_kind_t uint8_t have_star; // try to keep compiler clean from nlr mp_obj_t compile_error; // set to an exception object if there's an error size_t compile_error_line; // set to best guess of line of error uint next_label; uint16_t num_dict_params; uint16_t num_default_params; uint16_t break_label; // highest bit set indicates we are breaking out of a for loop uint16_t continue_label; uint16_t cur_except_level; // increased for SETUP_EXCEPT, SETUP_FINALLY; decreased for POP_BLOCK, POP_EXCEPT uint16_t break_continue_except_level; scope_t *scope_head; scope_t *scope_cur; emit_t *emit; // current emitter #if NEED_METHOD_TABLE const emit_method_table_t *emit_method_table; // current emit method table #endif #if MICROPY_EMIT_INLINE_ASM emit_inline_asm_t *emit_inline_asm; // current emitter for inline asm const emit_inline_asm_method_table_t *emit_inline_asm_method_table; // current emit method table for inline asm #endif } compiler_t; STATIC void compile_error_set_line(compiler_t *comp, mp_parse_node_t pn) { // if the line of the error is unknown then try to update it from the pn if (comp->compile_error_line == 0 && MP_PARSE_NODE_IS_STRUCT(pn)) { comp->compile_error_line = ((mp_parse_node_struct_t*)pn)->source_line; } } STATIC void compile_syntax_error(compiler_t *comp, mp_parse_node_t pn, const char *msg) { // only register the error if there has been no other error if (comp->compile_error == MP_OBJ_NULL) { comp->compile_error = mp_obj_new_exception_msg(&mp_type_SyntaxError, msg); compile_error_set_line(comp, pn); } } STATIC void compile_trailer_paren_helper(compiler_t *comp, mp_parse_node_t pn_arglist, bool is_method_call, int n_positional_extra); STATIC void compile_comprehension(compiler_t *comp, mp_parse_node_struct_t *pns, scope_kind_t kind); STATIC void compile_node(compiler_t *comp, mp_parse_node_t pn); STATIC uint comp_next_label(compiler_t *comp) { return comp->next_label++; } #if MICROPY_EMIT_NATIVE STATIC void reserve_labels_for_native(compiler_t *comp, int n) { if (comp->scope_cur->emit_options != MP_EMIT_OPT_BYTECODE) { comp->next_label += n; } } #else #define reserve_labels_for_native(comp, n) #endif STATIC void compile_increase_except_level(compiler_t *comp, uint label, int kind) { EMIT_ARG(setup_block, label, kind); comp->cur_except_level += 1; if (comp->cur_except_level > comp->scope_cur->exc_stack_size) { comp->scope_cur->exc_stack_size = comp->cur_except_level; } } STATIC void compile_decrease_except_level(compiler_t *comp) { assert(comp->cur_except_level > 0); comp->cur_except_level -= 1; EMIT(end_finally); reserve_labels_for_native(comp, 1); } STATIC scope_t *scope_new_and_link(compiler_t *comp, scope_kind_t kind, mp_parse_node_t pn, uint emit_options) { scope_t *scope = scope_new(kind, pn, comp->source_file, emit_options); scope->parent = comp->scope_cur; scope->next = NULL; if (comp->scope_head == NULL) { comp->scope_head = scope; } else { scope_t *s = comp->scope_head; while (s->next != NULL) { s = s->next; } s->next = scope; } return scope; } typedef void (*apply_list_fun_t)(compiler_t *comp, mp_parse_node_t pn); STATIC void apply_to_single_or_list(compiler_t *comp, mp_parse_node_t pn, pn_kind_t pn_list_kind, apply_list_fun_t f) { if (MP_PARSE_NODE_IS_STRUCT_KIND(pn, pn_list_kind)) { mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)pn; int num_nodes = MP_PARSE_NODE_STRUCT_NUM_NODES(pns); for (int i = 0; i < num_nodes; i++) { f(comp, pns->nodes[i]); } } else if (!MP_PARSE_NODE_IS_NULL(pn)) { f(comp, pn); } } STATIC void compile_generic_all_nodes(compiler_t *comp, mp_parse_node_struct_t *pns) { int num_nodes = MP_PARSE_NODE_STRUCT_NUM_NODES(pns); for (int i = 0; i < num_nodes; i++) { compile_node(comp, pns->nodes[i]); if (comp->compile_error != MP_OBJ_NULL) { // add line info for the error in case it didn't have a line number compile_error_set_line(comp, pns->nodes[i]); return; } } } STATIC void compile_load_id(compiler_t *comp, qstr qst) { if (comp->pass == MP_PASS_SCOPE) { mp_emit_common_get_id_for_load(comp->scope_cur, qst); } else { #if NEED_METHOD_TABLE mp_emit_common_id_op(comp->emit, &comp->emit_method_table->load_id, comp->scope_cur, qst); #else mp_emit_common_id_op(comp->emit, &mp_emit_bc_method_table_load_id_ops, comp->scope_cur, qst); #endif } } STATIC void compile_store_id(compiler_t *comp, qstr qst) { if (comp->pass == MP_PASS_SCOPE) { mp_emit_common_get_id_for_modification(comp->scope_cur, qst); } else { #if NEED_METHOD_TABLE mp_emit_common_id_op(comp->emit, &comp->emit_method_table->store_id, comp->scope_cur, qst); #else mp_emit_common_id_op(comp->emit, &mp_emit_bc_method_table_store_id_ops, comp->scope_cur, qst); #endif } } STATIC void compile_delete_id(compiler_t *comp, qstr qst) { if (comp->pass == MP_PASS_SCOPE) { mp_emit_common_get_id_for_modification(comp->scope_cur, qst); } else { #if NEED_METHOD_TABLE mp_emit_common_id_op(comp->emit, &comp->emit_method_table->delete_id, comp->scope_cur, qst); #else mp_emit_common_id_op(comp->emit, &mp_emit_bc_method_table_delete_id_ops, comp->scope_cur, qst); #endif } } STATIC void c_tuple(compiler_t *comp, mp_parse_node_t pn, mp_parse_node_struct_t *pns_list) { int total = 0; if (!MP_PARSE_NODE_IS_NULL(pn)) { compile_node(comp, pn); total += 1; } if (pns_list != NULL) { int n = MP_PARSE_NODE_STRUCT_NUM_NODES(pns_list); for (int i = 0; i < n; i++) { compile_node(comp, pns_list->nodes[i]); } total += n; } EMIT_ARG(build, total, MP_EMIT_BUILD_TUPLE); } STATIC void compile_generic_tuple(compiler_t *comp, mp_parse_node_struct_t *pns) { // a simple tuple expression c_tuple(comp, MP_PARSE_NODE_NULL, pns); } STATIC void c_if_cond(compiler_t *comp, mp_parse_node_t pn, bool jump_if, int label) { if (mp_parse_node_is_const_false(pn)) { if (jump_if == false) { EMIT_ARG(jump, label); } return; } else if (mp_parse_node_is_const_true(pn)) { if (jump_if == true) { EMIT_ARG(jump, label); } return; } else if (MP_PARSE_NODE_IS_STRUCT(pn)) { mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)pn; int n = MP_PARSE_NODE_STRUCT_NUM_NODES(pns); if (MP_PARSE_NODE_STRUCT_KIND(pns) == PN_or_test) { if (jump_if == false) { and_or_logic1:; uint label2 = comp_next_label(comp); for (int i = 0; i < n - 1; i++) { c_if_cond(comp, pns->nodes[i], !jump_if, label2); } c_if_cond(comp, pns->nodes[n - 1], jump_if, label); EMIT_ARG(label_assign, label2); } else { and_or_logic2: for (int i = 0; i < n; i++) { c_if_cond(comp, pns->nodes[i], jump_if, label); } } return; } else if (MP_PARSE_NODE_STRUCT_KIND(pns) == PN_and_test) { if (jump_if == false) { goto and_or_logic2; } else { goto and_or_logic1; } } else if (MP_PARSE_NODE_STRUCT_KIND(pns) == PN_not_test_2) { c_if_cond(comp, pns->nodes[0], !jump_if, label); return; } else if (MP_PARSE_NODE_STRUCT_KIND(pns) == PN_atom_paren) { // cond is something in parenthesis if (MP_PARSE_NODE_IS_NULL(pns->nodes[0])) { // empty tuple, acts as false for the condition if (jump_if == false) { EMIT_ARG(jump, label); } } else { assert(MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_testlist_comp)); // non-empty tuple, acts as true for the condition if (jump_if == true) { EMIT_ARG(jump, label); } } return; } } // nothing special, fall back to default compiling for node and jump compile_node(comp, pn); EMIT_ARG(pop_jump_if, jump_if, label); } typedef enum { ASSIGN_STORE, ASSIGN_AUG_LOAD, ASSIGN_AUG_STORE } assign_kind_t; STATIC void c_assign(compiler_t *comp, mp_parse_node_t pn, assign_kind_t kind); STATIC void c_assign_atom_expr(compiler_t *comp, mp_parse_node_struct_t *pns, assign_kind_t assign_kind) { if (assign_kind != ASSIGN_AUG_STORE) { compile_node(comp, pns->nodes[0]); } if (MP_PARSE_NODE_IS_STRUCT(pns->nodes[1])) { mp_parse_node_struct_t *pns1 = (mp_parse_node_struct_t*)pns->nodes[1]; if (MP_PARSE_NODE_STRUCT_KIND(pns1) == PN_atom_expr_trailers) { int n = MP_PARSE_NODE_STRUCT_NUM_NODES(pns1); if (assign_kind != ASSIGN_AUG_STORE) { for (int i = 0; i < n - 1; i++) { compile_node(comp, pns1->nodes[i]); } } assert(MP_PARSE_NODE_IS_STRUCT(pns1->nodes[n - 1])); pns1 = (mp_parse_node_struct_t*)pns1->nodes[n - 1]; } if (MP_PARSE_NODE_STRUCT_KIND(pns1) == PN_trailer_bracket) { if (assign_kind == ASSIGN_AUG_STORE) { EMIT(rot_three); EMIT_ARG(subscr, MP_EMIT_SUBSCR_STORE); } else { compile_node(comp, pns1->nodes[0]); if (assign_kind == ASSIGN_AUG_LOAD) { EMIT(dup_top_two); EMIT_ARG(subscr, MP_EMIT_SUBSCR_LOAD); } else { EMIT_ARG(subscr, MP_EMIT_SUBSCR_STORE); } } return; } else if (MP_PARSE_NODE_STRUCT_KIND(pns1) == PN_trailer_period) { assert(MP_PARSE_NODE_IS_ID(pns1->nodes[0])); if (assign_kind == ASSIGN_AUG_LOAD) { EMIT(dup_top); EMIT_ARG(attr, MP_PARSE_NODE_LEAF_ARG(pns1->nodes[0]), MP_EMIT_ATTR_LOAD); } else { if (assign_kind == ASSIGN_AUG_STORE) { EMIT(rot_two); } EMIT_ARG(attr, MP_PARSE_NODE_LEAF_ARG(pns1->nodes[0]), MP_EMIT_ATTR_STORE); } return; } } compile_syntax_error(comp, (mp_parse_node_t)pns, "can't assign to expression"); } // we need to allow for a caller passing in 1 initial node (node_head) followed by an array of nodes (nodes_tail) STATIC void c_assign_tuple(compiler_t *comp, mp_parse_node_t node_head, uint num_tail, mp_parse_node_t *nodes_tail) { uint num_head = (node_head == MP_PARSE_NODE_NULL) ? 0 : 1; // look for star expression uint have_star_index = -1; if (num_head != 0 && MP_PARSE_NODE_IS_STRUCT_KIND(node_head, PN_star_expr)) { EMIT_ARG(unpack_ex, 0, num_tail); have_star_index = 0; } for (uint i = 0; i < num_tail; i++) { if (MP_PARSE_NODE_IS_STRUCT_KIND(nodes_tail[i], PN_star_expr)) { if (have_star_index == (uint)-1) { EMIT_ARG(unpack_ex, num_head + i, num_tail - i - 1); have_star_index = num_head + i; } else { compile_syntax_error(comp, nodes_tail[i], "multiple *x in assignment"); return; } } } if (have_star_index == (uint)-1) { EMIT_ARG(unpack_sequence, num_head + num_tail); } if (num_head != 0) { if (0 == have_star_index) { c_assign(comp, ((mp_parse_node_struct_t*)node_head)->nodes[0], ASSIGN_STORE); } else { c_assign(comp, node_head, ASSIGN_STORE); } } for (uint i = 0; i < num_tail; i++) { if (num_head + i == have_star_index) { c_assign(comp, ((mp_parse_node_struct_t*)nodes_tail[i])->nodes[0], ASSIGN_STORE); } else { c_assign(comp, nodes_tail[i], ASSIGN_STORE); } } } // assigns top of stack to pn STATIC void c_assign(compiler_t *comp, mp_parse_node_t pn, assign_kind_t assign_kind) { assert(!MP_PARSE_NODE_IS_NULL(pn)); if (MP_PARSE_NODE_IS_LEAF(pn)) { if (MP_PARSE_NODE_IS_ID(pn)) { qstr arg = MP_PARSE_NODE_LEAF_ARG(pn); switch (assign_kind) { case ASSIGN_STORE: case ASSIGN_AUG_STORE: compile_store_id(comp, arg); break; case ASSIGN_AUG_LOAD: default: compile_load_id(comp, arg); break; } } else { goto cannot_assign; } } else { // pn must be a struct mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)pn; switch (MP_PARSE_NODE_STRUCT_KIND(pns)) { case PN_atom_expr_normal: // lhs is an index or attribute c_assign_atom_expr(comp, pns, assign_kind); break; case PN_testlist_star_expr: case PN_exprlist: // lhs is a tuple if (assign_kind != ASSIGN_STORE) { goto cannot_assign; } c_assign_tuple(comp, MP_PARSE_NODE_NULL, MP_PARSE_NODE_STRUCT_NUM_NODES(pns), pns->nodes); break; case PN_atom_paren: // lhs is something in parenthesis if (MP_PARSE_NODE_IS_NULL(pns->nodes[0])) { // empty tuple goto cannot_assign; } else { assert(MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_testlist_comp)); if (assign_kind != ASSIGN_STORE) { goto cannot_assign; } pns = (mp_parse_node_struct_t*)pns->nodes[0]; goto testlist_comp; } break; case PN_atom_bracket: // lhs is something in brackets if (assign_kind != ASSIGN_STORE) { goto cannot_assign; } if (MP_PARSE_NODE_IS_NULL(pns->nodes[0])) { // empty list, assignment allowed c_assign_tuple(comp, MP_PARSE_NODE_NULL, 0, NULL); } else if (MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_testlist_comp)) { pns = (mp_parse_node_struct_t*)pns->nodes[0]; goto testlist_comp; } else { // brackets around 1 item c_assign_tuple(comp, pns->nodes[0], 0, NULL); } break; default: goto cannot_assign; } return; testlist_comp: // lhs is a sequence if (MP_PARSE_NODE_IS_STRUCT(pns->nodes[1])) { mp_parse_node_struct_t *pns2 = (mp_parse_node_struct_t*)pns->nodes[1]; if (MP_PARSE_NODE_STRUCT_KIND(pns2) == PN_testlist_comp_3b) { // sequence of one item, with trailing comma assert(MP_PARSE_NODE_IS_NULL(pns2->nodes[0])); c_assign_tuple(comp, pns->nodes[0], 0, NULL); } else if (MP_PARSE_NODE_STRUCT_KIND(pns2) == PN_testlist_comp_3c) { // sequence of many items uint n = MP_PARSE_NODE_STRUCT_NUM_NODES(pns2); c_assign_tuple(comp, pns->nodes[0], n, pns2->nodes); } else if (MP_PARSE_NODE_STRUCT_KIND(pns2) == PN_comp_for) { goto cannot_assign; } else { // sequence with 2 items goto sequence_with_2_items; } } else { // sequence with 2 items sequence_with_2_items: c_assign_tuple(comp, MP_PARSE_NODE_NULL, 2, pns->nodes); } return; } return; cannot_assign: compile_syntax_error(comp, pn, "can't assign to expression"); } // stuff for lambda and comprehensions and generators: // if n_pos_defaults > 0 then there is a tuple on the stack with the positional defaults // if n_kw_defaults > 0 then there is a dictionary on the stack with the keyword defaults // if both exist, the tuple is above the dictionary (ie the first pop gets the tuple) STATIC void close_over_variables_etc(compiler_t *comp, scope_t *this_scope, int n_pos_defaults, int n_kw_defaults) { assert(n_pos_defaults >= 0); assert(n_kw_defaults >= 0); // set flags if (n_kw_defaults > 0) { this_scope->scope_flags |= MP_SCOPE_FLAG_DEFKWARGS; } this_scope->num_def_pos_args = n_pos_defaults; #if MICROPY_EMIT_NATIVE // When creating a function/closure it will take a reference to the current globals comp->scope_cur->scope_flags |= MP_SCOPE_FLAG_REFGLOBALS | MP_SCOPE_FLAG_HASCONSTS; #endif // make closed over variables, if any // ensure they are closed over in the order defined in the outer scope (mainly to agree with CPython) int nfree = 0; if (comp->scope_cur->kind != SCOPE_MODULE) { for (int i = 0; i < comp->scope_cur->id_info_len; i++) { id_info_t *id = &comp->scope_cur->id_info[i]; if (id->kind == ID_INFO_KIND_CELL || id->kind == ID_INFO_KIND_FREE) { for (int j = 0; j < this_scope->id_info_len; j++) { id_info_t *id2 = &this_scope->id_info[j]; if (id2->kind == ID_INFO_KIND_FREE && id->qst == id2->qst) { // in MicroPython we load closures using LOAD_FAST EMIT_LOAD_FAST(id->qst, id->local_num); nfree += 1; } } } } } // make the function/closure if (nfree == 0) { EMIT_ARG(make_function, this_scope, n_pos_defaults, n_kw_defaults); } else { EMIT_ARG(make_closure, this_scope, nfree, n_pos_defaults, n_kw_defaults); } } STATIC void compile_funcdef_lambdef_param(compiler_t *comp, mp_parse_node_t pn) { // For efficiency of the code below we extract the parse-node kind here int pn_kind; if (MP_PARSE_NODE_IS_ID(pn)) { pn_kind = -1; } else { assert(MP_PARSE_NODE_IS_STRUCT(pn)); pn_kind = MP_PARSE_NODE_STRUCT_KIND((mp_parse_node_struct_t*)pn); } if (pn_kind == PN_typedargslist_star || pn_kind == PN_varargslist_star) { comp->have_star = true; /* don't need to distinguish bare from named star mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)pn; if (MP_PARSE_NODE_IS_NULL(pns->nodes[0])) { // bare star } else { // named star } */ } else if (pn_kind == PN_typedargslist_dbl_star || pn_kind == PN_varargslist_dbl_star) { // named double star // TODO do we need to do anything with this? } else { mp_parse_node_t pn_id; mp_parse_node_t pn_equal; if (pn_kind == -1) { // this parameter is just an id pn_id = pn; pn_equal = MP_PARSE_NODE_NULL; } else if (pn_kind == PN_typedargslist_name) { // this parameter has a colon and/or equal specifier mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)pn; pn_id = pns->nodes[0]; //pn_colon = pns->nodes[1]; // unused pn_equal = pns->nodes[2]; } else { assert(pn_kind == PN_varargslist_name); // should be // this parameter has an equal specifier mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)pn; pn_id = pns->nodes[0]; pn_equal = pns->nodes[1]; } if (MP_PARSE_NODE_IS_NULL(pn_equal)) { // this parameter does not have a default value // check for non-default parameters given after default parameters (allowed by parser, but not syntactically valid) if (!comp->have_star && comp->num_default_params != 0) { compile_syntax_error(comp, pn, "non-default argument follows default argument"); return; } } else { // this parameter has a default value // in CPython, None (and True, False?) as default parameters are loaded with LOAD_NAME; don't understandy why if (comp->have_star) { comp->num_dict_params += 1; // in MicroPython we put the default dict parameters into a dictionary using the bytecode if (comp->num_dict_params == 1) { // in MicroPython we put the default positional parameters into a tuple using the bytecode // we need to do this here before we start building the map for the default keywords if (comp->num_default_params > 0) { EMIT_ARG(build, comp->num_default_params, MP_EMIT_BUILD_TUPLE); } else { EMIT(load_null); // sentinel indicating empty default positional args } // first default dict param, so make the map EMIT_ARG(build, 0, MP_EMIT_BUILD_MAP); } // compile value then key, then store it to the dict compile_node(comp, pn_equal); EMIT_ARG(load_const_str, MP_PARSE_NODE_LEAF_ARG(pn_id)); EMIT(store_map); } else { comp->num_default_params += 1; compile_node(comp, pn_equal); } } } } STATIC void compile_funcdef_lambdef(compiler_t *comp, scope_t *scope, mp_parse_node_t pn_params, pn_kind_t pn_list_kind) { // When we call compile_funcdef_lambdef_param below it can compile an arbitrary // expression for default arguments, which may contain a lambda. The lambda will // call here in a nested way, so we must save and restore the relevant state. bool orig_have_star = comp->have_star; uint16_t orig_num_dict_params = comp->num_dict_params; uint16_t orig_num_default_params = comp->num_default_params; // compile default parameters comp->have_star = false; comp->num_dict_params = 0; comp->num_default_params = 0; apply_to_single_or_list(comp, pn_params, pn_list_kind, compile_funcdef_lambdef_param); if (comp->compile_error != MP_OBJ_NULL) { return; } // in MicroPython we put the default positional parameters into a tuple using the bytecode // the default keywords args may have already made the tuple; if not, do it now if (comp->num_default_params > 0 && comp->num_dict_params == 0) { EMIT_ARG(build, comp->num_default_params, MP_EMIT_BUILD_TUPLE); EMIT(load_null); // sentinel indicating empty default keyword args } // make the function close_over_variables_etc(comp, scope, comp->num_default_params, comp->num_dict_params); // restore state comp->have_star = orig_have_star; comp->num_dict_params = orig_num_dict_params; comp->num_default_params = orig_num_default_params; } // leaves function object on stack // returns function name STATIC qstr compile_funcdef_helper(compiler_t *comp, mp_parse_node_struct_t *pns, uint emit_options) { if (comp->pass == MP_PASS_SCOPE) { // create a new scope for this function scope_t *s = scope_new_and_link(comp, SCOPE_FUNCTION, (mp_parse_node_t)pns, emit_options); // store the function scope so the compiling function can use it at each pass pns->nodes[4] = (mp_parse_node_t)s; } // get the scope for this function scope_t *fscope = (scope_t*)pns->nodes[4]; // compile the function definition compile_funcdef_lambdef(comp, fscope, pns->nodes[1], PN_typedargslist); // return its name (the 'f' in "def f(...):") return fscope->simple_name; } // leaves class object on stack // returns class name STATIC qstr compile_classdef_helper(compiler_t *comp, mp_parse_node_struct_t *pns, uint emit_options) { if (comp->pass == MP_PASS_SCOPE) { // create a new scope for this class scope_t *s = scope_new_and_link(comp, SCOPE_CLASS, (mp_parse_node_t)pns, emit_options); // store the class scope so the compiling function can use it at each pass pns->nodes[3] = (mp_parse_node_t)s; } EMIT(load_build_class); // scope for this class scope_t *cscope = (scope_t*)pns->nodes[3]; // compile the class close_over_variables_etc(comp, cscope, 0, 0); // get its name EMIT_ARG(load_const_str, cscope->simple_name); // nodes[1] has parent classes, if any // empty parenthesis (eg class C():) gets here as an empty PN_classdef_2 and needs special handling mp_parse_node_t parents = pns->nodes[1]; if (MP_PARSE_NODE_IS_STRUCT_KIND(parents, PN_classdef_2)) { parents = MP_PARSE_NODE_NULL; } compile_trailer_paren_helper(comp, parents, false, 2); // return its name (the 'C' in class C(...):") return cscope->simple_name; } // returns true if it was a built-in decorator (even if the built-in had an error) STATIC bool compile_built_in_decorator(compiler_t *comp, int name_len, mp_parse_node_t *name_nodes, uint *emit_options) { if (MP_PARSE_NODE_LEAF_ARG(name_nodes[0]) != MP_QSTR_micropython) { return false; } if (name_len != 2) { compile_syntax_error(comp, name_nodes[0], "invalid micropython decorator"); return true; } qstr attr = MP_PARSE_NODE_LEAF_ARG(name_nodes[1]); if (attr == MP_QSTR_bytecode) { *emit_options = MP_EMIT_OPT_BYTECODE; #if MICROPY_EMIT_NATIVE } else if (attr == MP_QSTR_native) { *emit_options = MP_EMIT_OPT_NATIVE_PYTHON; } else if (attr == MP_QSTR_viper) { *emit_options = MP_EMIT_OPT_VIPER; #endif #if MICROPY_EMIT_INLINE_ASM } else if (attr == ASM_DECORATOR_QSTR) { *emit_options = MP_EMIT_OPT_ASM; #endif } else { compile_syntax_error(comp, name_nodes[1], "invalid micropython decorator"); } return true; } STATIC void compile_decorated(compiler_t *comp, mp_parse_node_struct_t *pns) { // get the list of decorators mp_parse_node_t *nodes; int n = mp_parse_node_extract_list(&pns->nodes[0], PN_decorators, &nodes); // inherit emit options for this function/class definition uint emit_options = comp->scope_cur->emit_options; // compile each decorator int num_built_in_decorators = 0; for (int i = 0; i < n; i++) { assert(MP_PARSE_NODE_IS_STRUCT_KIND(nodes[i], PN_decorator)); // should be mp_parse_node_struct_t *pns_decorator = (mp_parse_node_struct_t*)nodes[i]; // nodes[0] contains the decorator function, which is a dotted name mp_parse_node_t *name_nodes; int name_len = mp_parse_node_extract_list(&pns_decorator->nodes[0], PN_dotted_name, &name_nodes); // check for built-in decorators if (compile_built_in_decorator(comp, name_len, name_nodes, &emit_options)) { // this was a built-in num_built_in_decorators += 1; } else { // not a built-in, compile normally // compile the decorator function compile_node(comp, name_nodes[0]); for (int j = 1; j < name_len; j++) { assert(MP_PARSE_NODE_IS_ID(name_nodes[j])); // should be EMIT_ARG(attr, MP_PARSE_NODE_LEAF_ARG(name_nodes[j]), MP_EMIT_ATTR_LOAD); } // nodes[1] contains arguments to the decorator function, if any if (!MP_PARSE_NODE_IS_NULL(pns_decorator->nodes[1])) { // call the decorator function with the arguments in nodes[1] compile_node(comp, pns_decorator->nodes[1]); } } } // compile the body (funcdef, async funcdef or classdef) and get its name mp_parse_node_struct_t *pns_body = (mp_parse_node_struct_t*)pns->nodes[1]; qstr body_name = 0; if (MP_PARSE_NODE_STRUCT_KIND(pns_body) == PN_funcdef) { body_name = compile_funcdef_helper(comp, pns_body, emit_options); #if MICROPY_PY_ASYNC_AWAIT } else if (MP_PARSE_NODE_STRUCT_KIND(pns_body) == PN_async_funcdef) { assert(MP_PARSE_NODE_IS_STRUCT(pns_body->nodes[0])); mp_parse_node_struct_t *pns0 = (mp_parse_node_struct_t*)pns_body->nodes[0]; body_name = compile_funcdef_helper(comp, pns0, emit_options); scope_t *fscope = (scope_t*)pns0->nodes[4]; fscope->scope_flags |= MP_SCOPE_FLAG_GENERATOR; #endif } else { assert(MP_PARSE_NODE_STRUCT_KIND(pns_body) == PN_classdef); // should be body_name = compile_classdef_helper(comp, pns_body, emit_options); } // call each decorator for (int i = 0; i < n - num_built_in_decorators; i++) { EMIT_ARG(call_function, 1, 0, 0); } // store func/class object into name compile_store_id(comp, body_name); } STATIC void compile_funcdef(compiler_t *comp, mp_parse_node_struct_t *pns) { qstr fname = compile_funcdef_helper(comp, pns, comp->scope_cur->emit_options); // store function object into function name compile_store_id(comp, fname); } STATIC void c_del_stmt(compiler_t *comp, mp_parse_node_t pn) { if (MP_PARSE_NODE_IS_ID(pn)) { compile_delete_id(comp, MP_PARSE_NODE_LEAF_ARG(pn)); } else if (MP_PARSE_NODE_IS_STRUCT_KIND(pn, PN_atom_expr_normal)) { mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)pn; compile_node(comp, pns->nodes[0]); // base of the atom_expr_normal node if (MP_PARSE_NODE_IS_STRUCT(pns->nodes[1])) { mp_parse_node_struct_t *pns1 = (mp_parse_node_struct_t*)pns->nodes[1]; if (MP_PARSE_NODE_STRUCT_KIND(pns1) == PN_atom_expr_trailers) { int n = MP_PARSE_NODE_STRUCT_NUM_NODES(pns1); for (int i = 0; i < n - 1; i++) { compile_node(comp, pns1->nodes[i]); } assert(MP_PARSE_NODE_IS_STRUCT(pns1->nodes[n - 1])); pns1 = (mp_parse_node_struct_t*)pns1->nodes[n - 1]; } if (MP_PARSE_NODE_STRUCT_KIND(pns1) == PN_trailer_bracket) { compile_node(comp, pns1->nodes[0]); EMIT_ARG(subscr, MP_EMIT_SUBSCR_DELETE); } else if (MP_PARSE_NODE_STRUCT_KIND(pns1) == PN_trailer_period) { assert(MP_PARSE_NODE_IS_ID(pns1->nodes[0])); EMIT_ARG(attr, MP_PARSE_NODE_LEAF_ARG(pns1->nodes[0]), MP_EMIT_ATTR_DELETE); } else { goto cannot_delete; } } else { goto cannot_delete; } } else if (MP_PARSE_NODE_IS_STRUCT_KIND(pn, PN_atom_paren)) { pn = ((mp_parse_node_struct_t*)pn)->nodes[0]; if (MP_PARSE_NODE_IS_NULL(pn)) { goto cannot_delete; } else { assert(MP_PARSE_NODE_IS_STRUCT_KIND(pn, PN_testlist_comp)); mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)pn; // TODO perhaps factorise testlist_comp code with other uses of PN_testlist_comp if (MP_PARSE_NODE_IS_STRUCT(pns->nodes[1])) { mp_parse_node_struct_t *pns1 = (mp_parse_node_struct_t*)pns->nodes[1]; if (MP_PARSE_NODE_STRUCT_KIND(pns1) == PN_testlist_comp_3b) { // sequence of one item, with trailing comma assert(MP_PARSE_NODE_IS_NULL(pns1->nodes[0])); c_del_stmt(comp, pns->nodes[0]); } else if (MP_PARSE_NODE_STRUCT_KIND(pns1) == PN_testlist_comp_3c) { // sequence of many items int n = MP_PARSE_NODE_STRUCT_NUM_NODES(pns1); c_del_stmt(comp, pns->nodes[0]); for (int i = 0; i < n; i++) { c_del_stmt(comp, pns1->nodes[i]); } } else if (MP_PARSE_NODE_STRUCT_KIND(pns1) == PN_comp_for) { goto cannot_delete; } else { // sequence with 2 items goto sequence_with_2_items; } } else { // sequence with 2 items sequence_with_2_items: c_del_stmt(comp, pns->nodes[0]); c_del_stmt(comp, pns->nodes[1]); } } } else { // some arbitrary statement that we can't delete (eg del 1) goto cannot_delete; } return; cannot_delete: compile_syntax_error(comp, (mp_parse_node_t)pn, "can't delete expression"); } STATIC void compile_del_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) { apply_to_single_or_list(comp, pns->nodes[0], PN_exprlist, c_del_stmt); } STATIC void compile_break_cont_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) { uint16_t label; const char *error_msg; if (MP_PARSE_NODE_STRUCT_KIND(pns) == PN_break_stmt) { label = comp->break_label; error_msg = "'break' outside loop"; } else { label = comp->continue_label; error_msg = "'continue' outside loop"; } if (label == INVALID_LABEL) { compile_syntax_error(comp, (mp_parse_node_t)pns, error_msg); } assert(comp->cur_except_level >= comp->break_continue_except_level); EMIT_ARG(unwind_jump, label, comp->cur_except_level - comp->break_continue_except_level); } STATIC void compile_return_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) { if (comp->scope_cur->kind != SCOPE_FUNCTION) { compile_syntax_error(comp, (mp_parse_node_t)pns, "'return' outside function"); return; } if (MP_PARSE_NODE_IS_NULL(pns->nodes[0])) { // no argument to 'return', so return None EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE); } else if (MICROPY_COMP_RETURN_IF_EXPR && MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_test_if_expr)) { // special case when returning an if-expression; to match CPython optimisation mp_parse_node_struct_t *pns_test_if_expr = (mp_parse_node_struct_t*)pns->nodes[0]; mp_parse_node_struct_t *pns_test_if_else = (mp_parse_node_struct_t*)pns_test_if_expr->nodes[1]; uint l_fail = comp_next_label(comp); c_if_cond(comp, pns_test_if_else->nodes[0], false, l_fail); // condition compile_node(comp, pns_test_if_expr->nodes[0]); // success value EMIT(return_value); EMIT_ARG(label_assign, l_fail); compile_node(comp, pns_test_if_else->nodes[1]); // failure value } else { compile_node(comp, pns->nodes[0]); } EMIT(return_value); } STATIC void compile_yield_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) { compile_node(comp, pns->nodes[0]); EMIT(pop_top); } STATIC void compile_raise_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) { if (MP_PARSE_NODE_IS_NULL(pns->nodes[0])) { // raise EMIT_ARG(raise_varargs, 0); } else if (MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_raise_stmt_arg)) { // raise x from y pns = (mp_parse_node_struct_t*)pns->nodes[0]; compile_node(comp, pns->nodes[0]); compile_node(comp, pns->nodes[1]); EMIT_ARG(raise_varargs, 2); } else { // raise x compile_node(comp, pns->nodes[0]); EMIT_ARG(raise_varargs, 1); } } // q_base holds the base of the name // eg a -> q_base=a // a.b.c -> q_base=a STATIC void do_import_name(compiler_t *comp, mp_parse_node_t pn, qstr *q_base) { bool is_as = false; if (MP_PARSE_NODE_IS_STRUCT_KIND(pn, PN_dotted_as_name)) { mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)pn; // a name of the form x as y; unwrap it *q_base = MP_PARSE_NODE_LEAF_ARG(pns->nodes[1]); pn = pns->nodes[0]; is_as = true; } if (MP_PARSE_NODE_IS_NULL(pn)) { // empty name (eg, from . import x) *q_base = MP_QSTR_; EMIT_ARG(import, MP_QSTR_, MP_EMIT_IMPORT_NAME); // import the empty string } else if (MP_PARSE_NODE_IS_ID(pn)) { // just a simple name qstr q_full = MP_PARSE_NODE_LEAF_ARG(pn); if (!is_as) { *q_base = q_full; } EMIT_ARG(import, q_full, MP_EMIT_IMPORT_NAME); } else { assert(MP_PARSE_NODE_IS_STRUCT_KIND(pn, PN_dotted_name)); // should be mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)pn; { // a name of the form a.b.c if (!is_as) { *q_base = MP_PARSE_NODE_LEAF_ARG(pns->nodes[0]); } int n = MP_PARSE_NODE_STRUCT_NUM_NODES(pns); int len = n - 1; for (int i = 0; i < n; i++) { len += qstr_len(MP_PARSE_NODE_LEAF_ARG(pns->nodes[i])); } char *q_ptr = mp_local_alloc(len); char *str_dest = q_ptr; for (int i = 0; i < n; i++) { if (i > 0) { *str_dest++ = '.'; } size_t str_src_len; const byte *str_src = qstr_data(MP_PARSE_NODE_LEAF_ARG(pns->nodes[i]), &str_src_len); memcpy(str_dest, str_src, str_src_len); str_dest += str_src_len; } qstr q_full = qstr_from_strn(q_ptr, len); mp_local_free(q_ptr); EMIT_ARG(import, q_full, MP_EMIT_IMPORT_NAME); if (is_as) { for (int i = 1; i < n; i++) { EMIT_ARG(attr, MP_PARSE_NODE_LEAF_ARG(pns->nodes[i]), MP_EMIT_ATTR_LOAD); } } } } } STATIC void compile_dotted_as_name(compiler_t *comp, mp_parse_node_t pn) { EMIT_ARG(load_const_small_int, 0); // level 0 import EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE); // not importing from anything qstr q_base; do_import_name(comp, pn, &q_base); compile_store_id(comp, q_base); } STATIC void compile_import_name(compiler_t *comp, mp_parse_node_struct_t *pns) { apply_to_single_or_list(comp, pns->nodes[0], PN_dotted_as_names, compile_dotted_as_name); } STATIC void compile_import_from(compiler_t *comp, mp_parse_node_struct_t *pns) { mp_parse_node_t pn_import_source = pns->nodes[0]; // extract the preceding .'s (if any) for a relative import, to compute the import level uint import_level = 0; do { mp_parse_node_t pn_rel; if (MP_PARSE_NODE_IS_TOKEN(pn_import_source) || MP_PARSE_NODE_IS_STRUCT_KIND(pn_import_source, PN_one_or_more_period_or_ellipsis)) { // This covers relative imports with dots only like "from .. import" pn_rel = pn_import_source; pn_import_source = MP_PARSE_NODE_NULL; } else if (MP_PARSE_NODE_IS_STRUCT_KIND(pn_import_source, PN_import_from_2b)) { // This covers relative imports starting with dot(s) like "from .foo import" mp_parse_node_struct_t *pns_2b = (mp_parse_node_struct_t*)pn_import_source; pn_rel = pns_2b->nodes[0]; pn_import_source = pns_2b->nodes[1]; assert(!MP_PARSE_NODE_IS_NULL(pn_import_source)); // should not be } else { // Not a relative import break; } // get the list of . and/or ...'s mp_parse_node_t *nodes; int n = mp_parse_node_extract_list(&pn_rel, PN_one_or_more_period_or_ellipsis, &nodes); // count the total number of .'s for (int i = 0; i < n; i++) { if (MP_PARSE_NODE_IS_TOKEN_KIND(nodes[i], MP_TOKEN_DEL_PERIOD)) { import_level++; } else { // should be an MP_TOKEN_ELLIPSIS import_level += 3; } } } while (0); if (MP_PARSE_NODE_IS_TOKEN_KIND(pns->nodes[1], MP_TOKEN_OP_STAR)) { EMIT_ARG(load_const_small_int, import_level); // build the "fromlist" tuple EMIT_ARG(load_const_str, MP_QSTR__star_); EMIT_ARG(build, 1, MP_EMIT_BUILD_TUPLE); // do the import qstr dummy_q; do_import_name(comp, pn_import_source, &dummy_q); EMIT_ARG(import, MP_QSTR_NULL, MP_EMIT_IMPORT_STAR); } else { EMIT_ARG(load_const_small_int, import_level); // build the "fromlist" tuple mp_parse_node_t *pn_nodes; int n = mp_parse_node_extract_list(&pns->nodes[1], PN_import_as_names, &pn_nodes); for (int i = 0; i < n; i++) { assert(MP_PARSE_NODE_IS_STRUCT_KIND(pn_nodes[i], PN_import_as_name)); mp_parse_node_struct_t *pns3 = (mp_parse_node_struct_t*)pn_nodes[i]; qstr id2 = MP_PARSE_NODE_LEAF_ARG(pns3->nodes[0]); // should be id EMIT_ARG(load_const_str, id2); } EMIT_ARG(build, n, MP_EMIT_BUILD_TUPLE); // do the import qstr dummy_q; do_import_name(comp, pn_import_source, &dummy_q); for (int i = 0; i < n; i++) { assert(MP_PARSE_NODE_IS_STRUCT_KIND(pn_nodes[i], PN_import_as_name)); mp_parse_node_struct_t *pns3 = (mp_parse_node_struct_t*)pn_nodes[i]; qstr id2 = MP_PARSE_NODE_LEAF_ARG(pns3->nodes[0]); // should be id EMIT_ARG(import, id2, MP_EMIT_IMPORT_FROM); if (MP_PARSE_NODE_IS_NULL(pns3->nodes[1])) { compile_store_id(comp, id2); } else { compile_store_id(comp, MP_PARSE_NODE_LEAF_ARG(pns3->nodes[1])); } } EMIT(pop_top); } } STATIC void compile_declare_global(compiler_t *comp, mp_parse_node_t pn, qstr qst, bool added, id_info_t *id_info) { if (!added && id_info->kind != ID_INFO_KIND_GLOBAL_EXPLICIT) { compile_syntax_error(comp, pn, "identifier redefined as global"); return; } id_info->kind = ID_INFO_KIND_GLOBAL_EXPLICIT; // if the id exists in the global scope, set its kind to EXPLICIT_GLOBAL id_info = scope_find_global(comp->scope_cur, qst); if (id_info != NULL) { id_info->kind = ID_INFO_KIND_GLOBAL_EXPLICIT; } } STATIC void compile_declare_nonlocal(compiler_t *comp, mp_parse_node_t pn, qstr qst, bool added, id_info_t *id_info) { if (added) { scope_find_local_and_close_over(comp->scope_cur, id_info, qst); if (id_info->kind == ID_INFO_KIND_GLOBAL_IMPLICIT) { compile_syntax_error(comp, pn, "no binding for nonlocal found"); } } else if (id_info->kind != ID_INFO_KIND_FREE) { compile_syntax_error(comp, pn, "identifier redefined as nonlocal"); } } STATIC void compile_global_nonlocal_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) { if (comp->pass == MP_PASS_SCOPE) { bool is_global = MP_PARSE_NODE_STRUCT_KIND(pns) == PN_global_stmt; if (!is_global && comp->scope_cur->kind == SCOPE_MODULE) { compile_syntax_error(comp, (mp_parse_node_t)pns, "can't declare nonlocal in outer code"); return; } mp_parse_node_t *nodes; int n = mp_parse_node_extract_list(&pns->nodes[0], PN_name_list, &nodes); for (int i = 0; i < n; i++) { qstr qst = MP_PARSE_NODE_LEAF_ARG(nodes[i]); bool added; id_info_t *id_info = scope_find_or_add_id(comp->scope_cur, qst, &added); if (is_global) { compile_declare_global(comp, (mp_parse_node_t)pns, qst, added, id_info); } else { compile_declare_nonlocal(comp, (mp_parse_node_t)pns, qst, added, id_info); } } } } STATIC void compile_assert_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) { // with optimisations enabled we don't compile assertions if (MP_STATE_VM(mp_optimise_value) != 0) { return; } uint l_end = comp_next_label(comp); c_if_cond(comp, pns->nodes[0], true, l_end); EMIT_LOAD_GLOBAL(MP_QSTR_AssertionError); // we load_global instead of load_id, to be consistent with CPython if (!MP_PARSE_NODE_IS_NULL(pns->nodes[1])) { // assertion message compile_node(comp, pns->nodes[1]); EMIT_ARG(call_function, 1, 0, 0); } EMIT_ARG(raise_varargs, 1); EMIT_ARG(label_assign, l_end); } STATIC void compile_if_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) { uint l_end = comp_next_label(comp); // optimisation: don't emit anything when "if False" if (!mp_parse_node_is_const_false(pns->nodes[0])) { uint l_fail = comp_next_label(comp); c_if_cond(comp, pns->nodes[0], false, l_fail); // if condition compile_node(comp, pns->nodes[1]); // if block // optimisation: skip everything else when "if True" if (mp_parse_node_is_const_true(pns->nodes[0])) { goto done; } if ( // optimisation: don't jump over non-existent elif/else blocks !(MP_PARSE_NODE_IS_NULL(pns->nodes[2]) && MP_PARSE_NODE_IS_NULL(pns->nodes[3])) // optimisation: don't jump if last instruction was return && !EMIT(last_emit_was_return_value) ) { // jump over elif/else blocks EMIT_ARG(jump, l_end); } EMIT_ARG(label_assign, l_fail); } // compile elif blocks (if any) mp_parse_node_t *pn_elif; int n_elif = mp_parse_node_extract_list(&pns->nodes[2], PN_if_stmt_elif_list, &pn_elif); for (int i = 0; i < n_elif; i++) { assert(MP_PARSE_NODE_IS_STRUCT_KIND(pn_elif[i], PN_if_stmt_elif)); // should be mp_parse_node_struct_t *pns_elif = (mp_parse_node_struct_t*)pn_elif[i]; // optimisation: don't emit anything when "if False" if (!mp_parse_node_is_const_false(pns_elif->nodes[0])) { uint l_fail = comp_next_label(comp); c_if_cond(comp, pns_elif->nodes[0], false, l_fail); // elif condition compile_node(comp, pns_elif->nodes[1]); // elif block // optimisation: skip everything else when "elif True" if (mp_parse_node_is_const_true(pns_elif->nodes[0])) { goto done; } // optimisation: don't jump if last instruction was return if (!EMIT(last_emit_was_return_value)) { EMIT_ARG(jump, l_end); } EMIT_ARG(label_assign, l_fail); } } // compile else block compile_node(comp, pns->nodes[3]); // can be null done: EMIT_ARG(label_assign, l_end); } #define START_BREAK_CONTINUE_BLOCK \ uint16_t old_break_label = comp->break_label; \ uint16_t old_continue_label = comp->continue_label; \ uint16_t old_break_continue_except_level = comp->break_continue_except_level; \ uint break_label = comp_next_label(comp); \ uint continue_label = comp_next_label(comp); \ comp->break_label = break_label; \ comp->continue_label = continue_label; \ comp->break_continue_except_level = comp->cur_except_level; #define END_BREAK_CONTINUE_BLOCK \ comp->break_label = old_break_label; \ comp->continue_label = old_continue_label; \ comp->break_continue_except_level = old_break_continue_except_level; STATIC void compile_while_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) { START_BREAK_CONTINUE_BLOCK if (!mp_parse_node_is_const_false(pns->nodes[0])) { // optimisation: don't emit anything for "while False" uint top_label = comp_next_label(comp); if (!mp_parse_node_is_const_true(pns->nodes[0])) { // optimisation: don't jump to cond for "while True" EMIT_ARG(jump, continue_label); } EMIT_ARG(label_assign, top_label); compile_node(comp, pns->nodes[1]); // body EMIT_ARG(label_assign, continue_label); c_if_cond(comp, pns->nodes[0], true, top_label); // condition } // break/continue apply to outer loop (if any) in the else block END_BREAK_CONTINUE_BLOCK compile_node(comp, pns->nodes[2]); // else EMIT_ARG(label_assign, break_label); } // This function compiles an optimised for-loop of the form: // for in range(, , ): // // else: // // must be an identifier and must be a small-int. // // Semantics of for-loop require: // - final failing value should not be stored in the loop variable // - if the loop never runs, the loop variable should never be assigned // - assignments to , or in the body do not alter the loop // ( is a constant for us, so no need to worry about it changing) // // If is a small-int, then the stack during the for-loop contains just // the current value of . Otherwise, the stack contains then the // current value of . STATIC void compile_for_stmt_optimised_range(compiler_t *comp, mp_parse_node_t pn_var, mp_parse_node_t pn_start, mp_parse_node_t pn_end, mp_parse_node_t pn_step, mp_parse_node_t pn_body, mp_parse_node_t pn_else) { START_BREAK_CONTINUE_BLOCK uint top_label = comp_next_label(comp); uint entry_label = comp_next_label(comp); // put the end value on the stack if it's not a small-int constant bool end_on_stack = !MP_PARSE_NODE_IS_SMALL_INT(pn_end); if (end_on_stack) { compile_node(comp, pn_end); } // compile: start compile_node(comp, pn_start); EMIT_ARG(jump, entry_label); EMIT_ARG(label_assign, top_label); // duplicate next value and store it to var EMIT(dup_top); c_assign(comp, pn_var, ASSIGN_STORE); // compile body compile_node(comp, pn_body); EMIT_ARG(label_assign, continue_label); // compile: var + step compile_node(comp, pn_step); EMIT_ARG(binary_op, MP_BINARY_OP_INPLACE_ADD); EMIT_ARG(label_assign, entry_label); // compile: if var end: goto top if (end_on_stack) { EMIT(dup_top_two); EMIT(rot_two); } else { EMIT(dup_top); compile_node(comp, pn_end); } assert(MP_PARSE_NODE_IS_SMALL_INT(pn_step)); if (MP_PARSE_NODE_LEAF_SMALL_INT(pn_step) >= 0) { EMIT_ARG(binary_op, MP_BINARY_OP_LESS); } else { EMIT_ARG(binary_op, MP_BINARY_OP_MORE); } EMIT_ARG(pop_jump_if, true, top_label); // break/continue apply to outer loop (if any) in the else block END_BREAK_CONTINUE_BLOCK // Compile the else block. We must pop the iterator variables before // executing the else code because it may contain break/continue statements. uint end_label = 0; if (!MP_PARSE_NODE_IS_NULL(pn_else)) { // discard final value of "var", and possible "end" value EMIT(pop_top); if (end_on_stack) { EMIT(pop_top); } compile_node(comp, pn_else); end_label = comp_next_label(comp); EMIT_ARG(jump, end_label); EMIT_ARG(adjust_stack_size, 1 + end_on_stack); } EMIT_ARG(label_assign, break_label); // discard final value of var that failed the loop condition EMIT(pop_top); // discard value if it's on the stack if (end_on_stack) { EMIT(pop_top); } if (!MP_PARSE_NODE_IS_NULL(pn_else)) { EMIT_ARG(label_assign, end_label); } } STATIC void compile_for_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) { // this bit optimises: for in range(...), turning it into an explicitly incremented variable // this is actually slower, but uses no heap memory // for viper it will be much, much faster if (/*comp->scope_cur->emit_options == MP_EMIT_OPT_VIPER &&*/ MP_PARSE_NODE_IS_ID(pns->nodes[0]) && MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[1], PN_atom_expr_normal)) { mp_parse_node_struct_t *pns_it = (mp_parse_node_struct_t*)pns->nodes[1]; if (MP_PARSE_NODE_IS_ID(pns_it->nodes[0]) && MP_PARSE_NODE_LEAF_ARG(pns_it->nodes[0]) == MP_QSTR_range && MP_PARSE_NODE_STRUCT_KIND((mp_parse_node_struct_t*)pns_it->nodes[1]) == PN_trailer_paren) { mp_parse_node_t pn_range_args = ((mp_parse_node_struct_t*)pns_it->nodes[1])->nodes[0]; mp_parse_node_t *args; int n_args = mp_parse_node_extract_list(&pn_range_args, PN_arglist, &args); mp_parse_node_t pn_range_start; mp_parse_node_t pn_range_end; mp_parse_node_t pn_range_step; bool optimize = false; if (1 <= n_args && n_args <= 3) { optimize = true; if (n_args == 1) { pn_range_start = mp_parse_node_new_small_int(0); pn_range_end = args[0]; pn_range_step = mp_parse_node_new_small_int(1); } else if (n_args == 2) { pn_range_start = args[0]; pn_range_end = args[1]; pn_range_step = mp_parse_node_new_small_int(1); } else { pn_range_start = args[0]; pn_range_end = args[1]; pn_range_step = args[2]; // the step must be a non-zero constant integer to do the optimisation if (!MP_PARSE_NODE_IS_SMALL_INT(pn_range_step) || MP_PARSE_NODE_LEAF_SMALL_INT(pn_range_step) == 0) { optimize = false; } } // arguments must be able to be compiled as standard expressions if (optimize && MP_PARSE_NODE_IS_STRUCT(pn_range_start)) { int k = MP_PARSE_NODE_STRUCT_KIND((mp_parse_node_struct_t*)pn_range_start); if (k == PN_arglist_star || k == PN_arglist_dbl_star || k == PN_argument) { optimize = false; } } if (optimize && MP_PARSE_NODE_IS_STRUCT(pn_range_end)) { int k = MP_PARSE_NODE_STRUCT_KIND((mp_parse_node_struct_t*)pn_range_end); if (k == PN_arglist_star || k == PN_arglist_dbl_star || k == PN_argument) { optimize = false; } } } if (optimize) { compile_for_stmt_optimised_range(comp, pns->nodes[0], pn_range_start, pn_range_end, pn_range_step, pns->nodes[2], pns->nodes[3]); return; } } } START_BREAK_CONTINUE_BLOCK comp->break_label |= MP_EMIT_BREAK_FROM_FOR; uint pop_label = comp_next_label(comp); compile_node(comp, pns->nodes[1]); // iterator EMIT_ARG(get_iter, true); EMIT_ARG(label_assign, continue_label); EMIT_ARG(for_iter, pop_label); c_assign(comp, pns->nodes[0], ASSIGN_STORE); // variable compile_node(comp, pns->nodes[2]); // body if (!EMIT(last_emit_was_return_value)) { EMIT_ARG(jump, continue_label); } EMIT_ARG(label_assign, pop_label); EMIT(for_iter_end); // break/continue apply to outer loop (if any) in the else block END_BREAK_CONTINUE_BLOCK compile_node(comp, pns->nodes[3]); // else (may be empty) EMIT_ARG(label_assign, break_label); } STATIC void compile_try_except(compiler_t *comp, mp_parse_node_t pn_body, int n_except, mp_parse_node_t *pn_excepts, mp_parse_node_t pn_else) { // setup code uint l1 = comp_next_label(comp); uint success_label = comp_next_label(comp); compile_increase_except_level(comp, l1, MP_EMIT_SETUP_BLOCK_EXCEPT); compile_node(comp, pn_body); // body EMIT(pop_block); EMIT_ARG(jump, success_label); // jump over exception handler EMIT_ARG(label_assign, l1); // start of exception handler EMIT(start_except_handler); // at this point the top of the stack contains the exception instance that was raised uint l2 = comp_next_label(comp); for (int i = 0; i < n_except; i++) { assert(MP_PARSE_NODE_IS_STRUCT_KIND(pn_excepts[i], PN_try_stmt_except)); // should be mp_parse_node_struct_t *pns_except = (mp_parse_node_struct_t*)pn_excepts[i]; qstr qstr_exception_local = 0; uint end_finally_label = comp_next_label(comp); if (MP_PARSE_NODE_IS_NULL(pns_except->nodes[0])) { // this is a catch all exception handler if (i + 1 != n_except) { compile_syntax_error(comp, pn_excepts[i], "default 'except' must be last"); compile_decrease_except_level(comp); return; } } else { // this exception handler requires a match to a certain type of exception mp_parse_node_t pns_exception_expr = pns_except->nodes[0]; if (MP_PARSE_NODE_IS_STRUCT(pns_exception_expr)) { mp_parse_node_struct_t *pns3 = (mp_parse_node_struct_t*)pns_exception_expr; if (MP_PARSE_NODE_STRUCT_KIND(pns3) == PN_try_stmt_as_name) { // handler binds the exception to a local pns_exception_expr = pns3->nodes[0]; qstr_exception_local = MP_PARSE_NODE_LEAF_ARG(pns3->nodes[1]); } } EMIT(dup_top); compile_node(comp, pns_exception_expr); EMIT_ARG(binary_op, MP_BINARY_OP_EXCEPTION_MATCH); EMIT_ARG(pop_jump_if, false, end_finally_label); } // either discard or store the exception instance if (qstr_exception_local == 0) { EMIT(pop_top); } else { compile_store_id(comp, qstr_exception_local); } uint l3 = 0; if (qstr_exception_local != 0) { l3 = comp_next_label(comp); compile_increase_except_level(comp, l3, MP_EMIT_SETUP_BLOCK_FINALLY); } compile_node(comp, pns_except->nodes[1]); if (qstr_exception_local != 0) { EMIT(pop_block); } EMIT(pop_except); if (qstr_exception_local != 0) { EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE); EMIT_ARG(label_assign, l3); EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE); compile_store_id(comp, qstr_exception_local); compile_delete_id(comp, qstr_exception_local); compile_decrease_except_level(comp); } EMIT_ARG(jump, l2); EMIT_ARG(label_assign, end_finally_label); EMIT_ARG(adjust_stack_size, 1); // stack adjust for the exception instance } compile_decrease_except_level(comp); EMIT(end_except_handler); EMIT_ARG(label_assign, success_label); compile_node(comp, pn_else); // else block, can be null EMIT_ARG(label_assign, l2); } STATIC void compile_try_finally(compiler_t *comp, mp_parse_node_t pn_body, int n_except, mp_parse_node_t *pn_except, mp_parse_node_t pn_else, mp_parse_node_t pn_finally) { uint l_finally_block = comp_next_label(comp); compile_increase_except_level(comp, l_finally_block, MP_EMIT_SETUP_BLOCK_FINALLY); if (n_except == 0) { assert(MP_PARSE_NODE_IS_NULL(pn_else)); EMIT_ARG(adjust_stack_size, 3); // stack adjust for possible UNWIND_JUMP state compile_node(comp, pn_body); EMIT_ARG(adjust_stack_size, -3); } else { compile_try_except(comp, pn_body, n_except, pn_except, pn_else); } EMIT(pop_block); EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE); EMIT_ARG(label_assign, l_finally_block); compile_node(comp, pn_finally); compile_decrease_except_level(comp); } STATIC void compile_try_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) { assert(MP_PARSE_NODE_IS_STRUCT(pns->nodes[1])); // should be { mp_parse_node_struct_t *pns2 = (mp_parse_node_struct_t*)pns->nodes[1]; if (MP_PARSE_NODE_STRUCT_KIND(pns2) == PN_try_stmt_finally) { // just try-finally compile_try_finally(comp, pns->nodes[0], 0, NULL, MP_PARSE_NODE_NULL, pns2->nodes[0]); } else if (MP_PARSE_NODE_STRUCT_KIND(pns2) == PN_try_stmt_except_and_more) { // try-except and possibly else and/or finally mp_parse_node_t *pn_excepts; int n_except = mp_parse_node_extract_list(&pns2->nodes[0], PN_try_stmt_except_list, &pn_excepts); if (MP_PARSE_NODE_IS_NULL(pns2->nodes[2])) { // no finally compile_try_except(comp, pns->nodes[0], n_except, pn_excepts, pns2->nodes[1]); } else { // have finally compile_try_finally(comp, pns->nodes[0], n_except, pn_excepts, pns2->nodes[1], ((mp_parse_node_struct_t*)pns2->nodes[2])->nodes[0]); } } else { // just try-except mp_parse_node_t *pn_excepts; int n_except = mp_parse_node_extract_list(&pns->nodes[1], PN_try_stmt_except_list, &pn_excepts); compile_try_except(comp, pns->nodes[0], n_except, pn_excepts, MP_PARSE_NODE_NULL); } } } STATIC void compile_with_stmt_helper(compiler_t *comp, int n, mp_parse_node_t *nodes, mp_parse_node_t body) { if (n == 0) { // no more pre-bits, compile the body of the with compile_node(comp, body); } else { uint l_end = comp_next_label(comp); if (MP_PARSE_NODE_IS_STRUCT_KIND(nodes[0], PN_with_item)) { // this pre-bit is of the form "a as b" mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)nodes[0]; compile_node(comp, pns->nodes[0]); compile_increase_except_level(comp, l_end, MP_EMIT_SETUP_BLOCK_WITH); c_assign(comp, pns->nodes[1], ASSIGN_STORE); } else { // this pre-bit is just an expression compile_node(comp, nodes[0]); compile_increase_except_level(comp, l_end, MP_EMIT_SETUP_BLOCK_WITH); EMIT(pop_top); } // compile additional pre-bits and the body compile_with_stmt_helper(comp, n - 1, nodes + 1, body); // finish this with block EMIT_ARG(with_cleanup, l_end); reserve_labels_for_native(comp, 3); // used by native's with_cleanup compile_decrease_except_level(comp); } } STATIC void compile_with_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) { // get the nodes for the pre-bit of the with (the a as b, c as d, ... bit) mp_parse_node_t *nodes; int n = mp_parse_node_extract_list(&pns->nodes[0], PN_with_stmt_list, &nodes); assert(n > 0); // compile in a nested fashion compile_with_stmt_helper(comp, n, nodes, pns->nodes[1]); } STATIC void compile_yield_from(compiler_t *comp) { EMIT_ARG(get_iter, false); EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE); EMIT_ARG(yield, MP_EMIT_YIELD_FROM); reserve_labels_for_native(comp, 3); } #if MICROPY_PY_ASYNC_AWAIT STATIC void compile_await_object_method(compiler_t *comp, qstr method) { EMIT_ARG(load_method, method, false); EMIT_ARG(call_method, 0, 0, 0); compile_yield_from(comp); } STATIC void compile_async_for_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) { // comp->break_label |= MP_EMIT_BREAK_FROM_FOR; qstr context = MP_PARSE_NODE_LEAF_ARG(pns->nodes[1]); uint while_else_label = comp_next_label(comp); uint try_exception_label = comp_next_label(comp); uint try_else_label = comp_next_label(comp); uint try_finally_label = comp_next_label(comp); compile_node(comp, pns->nodes[1]); // iterator compile_await_object_method(comp, MP_QSTR___aiter__); compile_store_id(comp, context); START_BREAK_CONTINUE_BLOCK EMIT_ARG(label_assign, continue_label); compile_increase_except_level(comp, try_exception_label, MP_EMIT_SETUP_BLOCK_EXCEPT); compile_load_id(comp, context); compile_await_object_method(comp, MP_QSTR___anext__); c_assign(comp, pns->nodes[0], ASSIGN_STORE); // variable EMIT(pop_block); EMIT_ARG(jump, try_else_label); EMIT_ARG(label_assign, try_exception_label); EMIT(start_except_handler); EMIT(dup_top); EMIT_LOAD_GLOBAL(MP_QSTR_StopAsyncIteration); EMIT_ARG(binary_op, MP_BINARY_OP_EXCEPTION_MATCH); EMIT_ARG(pop_jump_if, false, try_finally_label); EMIT(pop_top); // pop exception instance EMIT(pop_except); EMIT_ARG(jump, while_else_label); EMIT_ARG(label_assign, try_finally_label); EMIT_ARG(adjust_stack_size, 1); // if we jump here, the exc is on the stack compile_decrease_except_level(comp); EMIT(end_except_handler); EMIT_ARG(label_assign, try_else_label); compile_node(comp, pns->nodes[2]); // body EMIT_ARG(jump, continue_label); // break/continue apply to outer loop (if any) in the else block END_BREAK_CONTINUE_BLOCK EMIT_ARG(label_assign, while_else_label); compile_node(comp, pns->nodes[3]); // else EMIT_ARG(label_assign, break_label); } STATIC void compile_async_with_stmt_helper(compiler_t *comp, int n, mp_parse_node_t *nodes, mp_parse_node_t body) { if (n == 0) { // no more pre-bits, compile the body of the with compile_node(comp, body); } else { uint l_finally_block = comp_next_label(comp); uint l_aexit_no_exc = comp_next_label(comp); uint l_ret_unwind_jump = comp_next_label(comp); uint l_end = comp_next_label(comp); if (MP_PARSE_NODE_IS_STRUCT_KIND(nodes[0], PN_with_item)) { // this pre-bit is of the form "a as b" mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)nodes[0]; compile_node(comp, pns->nodes[0]); EMIT(dup_top); compile_await_object_method(comp, MP_QSTR___aenter__); c_assign(comp, pns->nodes[1], ASSIGN_STORE); } else { // this pre-bit is just an expression compile_node(comp, nodes[0]); EMIT(dup_top); compile_await_object_method(comp, MP_QSTR___aenter__); EMIT(pop_top); } // To keep the Python stack size down, and because we can't access values on // this stack further down than 3 elements (via rot_three), we don't preload // __aexit__ (as per normal with) but rather wait until we need it below. // Start the try-finally statement compile_increase_except_level(comp, l_finally_block, MP_EMIT_SETUP_BLOCK_FINALLY); // Compile any additional pre-bits of the "async with", and also the body EMIT_ARG(adjust_stack_size, 3); // stack adjust for possible UNWIND_JUMP state compile_async_with_stmt_helper(comp, n - 1, nodes + 1, body); EMIT_ARG(adjust_stack_size, -3); // Finish the "try" block EMIT(pop_block); // At this point, after the with body has executed, we have 3 cases: // 1. no exception, we just fall through to this point; stack: (..., ctx_mgr) // 2. exception propagating out, we get to the finally block; stack: (..., ctx_mgr, exc) // 3. return or unwind jump, we get to the finally block; stack: (..., ctx_mgr, X, INT) // Handle case 1: call __aexit__ // Stack: (..., ctx_mgr) EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE); // to tell end_finally there's no exception EMIT(rot_two); EMIT_ARG(jump, l_aexit_no_exc); // jump to code below to call __aexit__ // Start of "finally" block // At this point we have case 2 or 3, we detect which one by the TOS being an exception or not EMIT_ARG(label_assign, l_finally_block); // Detect if TOS an exception or not EMIT(dup_top); EMIT_LOAD_GLOBAL(MP_QSTR_Exception); EMIT_ARG(binary_op, MP_BINARY_OP_EXCEPTION_MATCH); EMIT_ARG(pop_jump_if, false, l_ret_unwind_jump); // if not an exception then we have case 3 // Handle case 2: call __aexit__ and either swallow or re-raise the exception // Stack: (..., ctx_mgr, exc) EMIT(dup_top); EMIT(rot_three); EMIT(rot_two); EMIT_ARG(load_method, MP_QSTR___aexit__, false); EMIT(rot_three); EMIT(rot_three); EMIT(dup_top); #if MICROPY_CPYTHON_COMPAT EMIT_ARG(attr, MP_QSTR___class__, MP_EMIT_ATTR_LOAD); // get type(exc) #else compile_load_id(comp, MP_QSTR_type); EMIT(rot_two); EMIT_ARG(call_function, 1, 0, 0); // get type(exc) #endif EMIT(rot_two); EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE); // dummy traceback value // Stack: (..., exc, __aexit__, ctx_mgr, type(exc), exc, None) EMIT_ARG(call_method, 3, 0, 0); compile_yield_from(comp); EMIT_ARG(pop_jump_if, false, l_end); EMIT(pop_top); // pop exception EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE); // replace with None to swallow exception EMIT_ARG(jump, l_end); EMIT_ARG(adjust_stack_size, 2); // Handle case 3: call __aexit__ // Stack: (..., ctx_mgr, X, INT) EMIT_ARG(label_assign, l_ret_unwind_jump); EMIT(rot_three); EMIT(rot_three); EMIT_ARG(label_assign, l_aexit_no_exc); EMIT_ARG(load_method, MP_QSTR___aexit__, false); EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE); EMIT(dup_top); EMIT(dup_top); EMIT_ARG(call_method, 3, 0, 0); compile_yield_from(comp); EMIT(pop_top); EMIT_ARG(adjust_stack_size, -1); // End of "finally" block // Stack can have one of three configurations: // a. (..., None) - from either case 1, or case 2 with swallowed exception // b. (..., exc) - from case 2 with re-raised exception // c. (..., X, INT) - from case 3 EMIT_ARG(label_assign, l_end); compile_decrease_except_level(comp); } } STATIC void compile_async_with_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) { // get the nodes for the pre-bit of the with (the a as b, c as d, ... bit) mp_parse_node_t *nodes; int n = mp_parse_node_extract_list(&pns->nodes[0], PN_with_stmt_list, &nodes); assert(n > 0); // compile in a nested fashion compile_async_with_stmt_helper(comp, n, nodes, pns->nodes[1]); } STATIC void compile_async_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) { assert(MP_PARSE_NODE_IS_STRUCT(pns->nodes[0])); mp_parse_node_struct_t *pns0 = (mp_parse_node_struct_t*)pns->nodes[0]; if (MP_PARSE_NODE_STRUCT_KIND(pns0) == PN_funcdef) { // async def compile_funcdef(comp, pns0); scope_t *fscope = (scope_t*)pns0->nodes[4]; fscope->scope_flags |= MP_SCOPE_FLAG_GENERATOR; } else if (MP_PARSE_NODE_STRUCT_KIND(pns0) == PN_for_stmt) { // async for compile_async_for_stmt(comp, pns0); } else { // async with assert(MP_PARSE_NODE_STRUCT_KIND(pns0) == PN_with_stmt); compile_async_with_stmt(comp, pns0); } } #endif STATIC void compile_expr_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) { if (MP_PARSE_NODE_IS_NULL(pns->nodes[1])) { if (comp->is_repl && comp->scope_cur->kind == SCOPE_MODULE) { // for REPL, evaluate then print the expression compile_load_id(comp, MP_QSTR___repl_print__); compile_node(comp, pns->nodes[0]); EMIT_ARG(call_function, 1, 0, 0); EMIT(pop_top); } else { // for non-REPL, evaluate then discard the expression if ((MP_PARSE_NODE_IS_LEAF(pns->nodes[0]) && !MP_PARSE_NODE_IS_ID(pns->nodes[0])) || MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_const_object)) { // do nothing with a lonely constant } else { compile_node(comp, pns->nodes[0]); // just an expression EMIT(pop_top); // discard last result since this is a statement and leaves nothing on the stack } } } else if (MP_PARSE_NODE_IS_STRUCT(pns->nodes[1])) { mp_parse_node_struct_t *pns1 = (mp_parse_node_struct_t*)pns->nodes[1]; int kind = MP_PARSE_NODE_STRUCT_KIND(pns1); if (kind == PN_expr_stmt_augassign) { c_assign(comp, pns->nodes[0], ASSIGN_AUG_LOAD); // lhs load for aug assign compile_node(comp, pns1->nodes[1]); // rhs assert(MP_PARSE_NODE_IS_TOKEN(pns1->nodes[0])); mp_binary_op_t op; switch (MP_PARSE_NODE_LEAF_ARG(pns1->nodes[0])) { case MP_TOKEN_DEL_PIPE_EQUAL: op = MP_BINARY_OP_INPLACE_OR; break; case MP_TOKEN_DEL_CARET_EQUAL: op = MP_BINARY_OP_INPLACE_XOR; break; case MP_TOKEN_DEL_AMPERSAND_EQUAL: op = MP_BINARY_OP_INPLACE_AND; break; case MP_TOKEN_DEL_DBL_LESS_EQUAL: op = MP_BINARY_OP_INPLACE_LSHIFT; break; case MP_TOKEN_DEL_DBL_MORE_EQUAL: op = MP_BINARY_OP_INPLACE_RSHIFT; break; case MP_TOKEN_DEL_PLUS_EQUAL: op = MP_BINARY_OP_INPLACE_ADD; break; case MP_TOKEN_DEL_MINUS_EQUAL: op = MP_BINARY_OP_INPLACE_SUBTRACT; break; case MP_TOKEN_DEL_STAR_EQUAL: op = MP_BINARY_OP_INPLACE_MULTIPLY; break; case MP_TOKEN_DEL_DBL_SLASH_EQUAL: op = MP_BINARY_OP_INPLACE_FLOOR_DIVIDE; break; case MP_TOKEN_DEL_SLASH_EQUAL: op = MP_BINARY_OP_INPLACE_TRUE_DIVIDE; break; case MP_TOKEN_DEL_PERCENT_EQUAL: op = MP_BINARY_OP_INPLACE_MODULO; break; case MP_TOKEN_DEL_DBL_STAR_EQUAL: default: op = MP_BINARY_OP_INPLACE_POWER; break; } EMIT_ARG(binary_op, op); c_assign(comp, pns->nodes[0], ASSIGN_AUG_STORE); // lhs store for aug assign } else if (kind == PN_expr_stmt_assign_list) { int rhs = MP_PARSE_NODE_STRUCT_NUM_NODES(pns1) - 1; compile_node(comp, pns1->nodes[rhs]); // rhs // following CPython, we store left-most first if (rhs > 0) { EMIT(dup_top); } c_assign(comp, pns->nodes[0], ASSIGN_STORE); // lhs store for (int i = 0; i < rhs; i++) { if (i + 1 < rhs) { EMIT(dup_top); } c_assign(comp, pns1->nodes[i], ASSIGN_STORE); // middle store } } else { plain_assign: #if MICROPY_COMP_DOUBLE_TUPLE_ASSIGN if (MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[1], PN_testlist_star_expr) && MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_testlist_star_expr)) { mp_parse_node_struct_t *pns0 = (mp_parse_node_struct_t*)pns->nodes[0]; pns1 = (mp_parse_node_struct_t*)pns->nodes[1]; uint32_t n_pns0 = MP_PARSE_NODE_STRUCT_NUM_NODES(pns0); // Can only optimise a tuple-to-tuple assignment when all of the following hold: // - equal number of items in LHS and RHS tuples // - 2 or 3 items in the tuples // - there are no star expressions in the LHS tuple if (n_pns0 == MP_PARSE_NODE_STRUCT_NUM_NODES(pns1) && (n_pns0 == 2 #if MICROPY_COMP_TRIPLE_TUPLE_ASSIGN || n_pns0 == 3 #endif ) && !MP_PARSE_NODE_IS_STRUCT_KIND(pns0->nodes[0], PN_star_expr) && !MP_PARSE_NODE_IS_STRUCT_KIND(pns0->nodes[1], PN_star_expr) #if MICROPY_COMP_TRIPLE_TUPLE_ASSIGN && (n_pns0 == 2 || !MP_PARSE_NODE_IS_STRUCT_KIND(pns0->nodes[2], PN_star_expr)) #endif ) { // Optimisation for a, b = c, d or a, b, c = d, e, f compile_node(comp, pns1->nodes[0]); // rhs compile_node(comp, pns1->nodes[1]); // rhs #if MICROPY_COMP_TRIPLE_TUPLE_ASSIGN if (n_pns0 == 3) { compile_node(comp, pns1->nodes[2]); // rhs EMIT(rot_three); } #endif EMIT(rot_two); c_assign(comp, pns0->nodes[0], ASSIGN_STORE); // lhs store c_assign(comp, pns0->nodes[1], ASSIGN_STORE); // lhs store #if MICROPY_COMP_TRIPLE_TUPLE_ASSIGN if (n_pns0 == 3) { c_assign(comp, pns0->nodes[2], ASSIGN_STORE); // lhs store } #endif return; } } #endif compile_node(comp, pns->nodes[1]); // rhs c_assign(comp, pns->nodes[0], ASSIGN_STORE); // lhs store } } else { goto plain_assign; } } STATIC void compile_test_if_expr(compiler_t *comp, mp_parse_node_struct_t *pns) { assert(MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[1], PN_test_if_else)); mp_parse_node_struct_t *pns_test_if_else = (mp_parse_node_struct_t*)pns->nodes[1]; uint l_fail = comp_next_label(comp); uint l_end = comp_next_label(comp); c_if_cond(comp, pns_test_if_else->nodes[0], false, l_fail); // condition compile_node(comp, pns->nodes[0]); // success value EMIT_ARG(jump, l_end); EMIT_ARG(label_assign, l_fail); EMIT_ARG(adjust_stack_size, -1); // adjust stack size compile_node(comp, pns_test_if_else->nodes[1]); // failure value EMIT_ARG(label_assign, l_end); } STATIC void compile_lambdef(compiler_t *comp, mp_parse_node_struct_t *pns) { if (comp->pass == MP_PASS_SCOPE) { // create a new scope for this lambda scope_t *s = scope_new_and_link(comp, SCOPE_LAMBDA, (mp_parse_node_t)pns, comp->scope_cur->emit_options); // store the lambda scope so the compiling function (this one) can use it at each pass pns->nodes[2] = (mp_parse_node_t)s; } // get the scope for this lambda scope_t *this_scope = (scope_t*)pns->nodes[2]; // compile the lambda definition compile_funcdef_lambdef(comp, this_scope, pns->nodes[0], PN_varargslist); } STATIC void compile_or_and_test(compiler_t *comp, mp_parse_node_struct_t *pns) { bool cond = MP_PARSE_NODE_STRUCT_KIND(pns) == PN_or_test; uint l_end = comp_next_label(comp); int n = MP_PARSE_NODE_STRUCT_NUM_NODES(pns); for (int i = 0; i < n; i += 1) { compile_node(comp, pns->nodes[i]); if (i + 1 < n) { EMIT_ARG(jump_if_or_pop, cond, l_end); } } EMIT_ARG(label_assign, l_end); } STATIC void compile_not_test_2(compiler_t *comp, mp_parse_node_struct_t *pns) { compile_node(comp, pns->nodes[0]); EMIT_ARG(unary_op, MP_UNARY_OP_NOT); } STATIC void compile_comparison(compiler_t *comp, mp_parse_node_struct_t *pns) { int num_nodes = MP_PARSE_NODE_STRUCT_NUM_NODES(pns); compile_node(comp, pns->nodes[0]); bool multi = (num_nodes > 3); uint l_fail = 0; if (multi) { l_fail = comp_next_label(comp); } for (int i = 1; i + 1 < num_nodes; i += 2) { compile_node(comp, pns->nodes[i + 1]); if (i + 2 < num_nodes) { EMIT(dup_top); EMIT(rot_three); } if (MP_PARSE_NODE_IS_TOKEN(pns->nodes[i])) { mp_binary_op_t op; switch (MP_PARSE_NODE_LEAF_ARG(pns->nodes[i])) { case MP_TOKEN_OP_LESS: op = MP_BINARY_OP_LESS; break; case MP_TOKEN_OP_MORE: op = MP_BINARY_OP_MORE; break; case MP_TOKEN_OP_DBL_EQUAL: op = MP_BINARY_OP_EQUAL; break; case MP_TOKEN_OP_LESS_EQUAL: op = MP_BINARY_OP_LESS_EQUAL; break; case MP_TOKEN_OP_MORE_EQUAL: op = MP_BINARY_OP_MORE_EQUAL; break; case MP_TOKEN_OP_NOT_EQUAL: op = MP_BINARY_OP_NOT_EQUAL; break; case MP_TOKEN_KW_IN: default: op = MP_BINARY_OP_IN; break; } EMIT_ARG(binary_op, op); } else { assert(MP_PARSE_NODE_IS_STRUCT(pns->nodes[i])); // should be mp_parse_node_struct_t *pns2 = (mp_parse_node_struct_t*)pns->nodes[i]; int kind = MP_PARSE_NODE_STRUCT_KIND(pns2); if (kind == PN_comp_op_not_in) { EMIT_ARG(binary_op, MP_BINARY_OP_NOT_IN); } else { assert(kind == PN_comp_op_is); // should be if (MP_PARSE_NODE_IS_NULL(pns2->nodes[0])) { EMIT_ARG(binary_op, MP_BINARY_OP_IS); } else { EMIT_ARG(binary_op, MP_BINARY_OP_IS_NOT); } } } if (i + 2 < num_nodes) { EMIT_ARG(jump_if_or_pop, false, l_fail); } } if (multi) { uint l_end = comp_next_label(comp); EMIT_ARG(jump, l_end); EMIT_ARG(label_assign, l_fail); EMIT_ARG(adjust_stack_size, 1); EMIT(rot_two); EMIT(pop_top); EMIT_ARG(label_assign, l_end); } } STATIC void compile_star_expr(compiler_t *comp, mp_parse_node_struct_t *pns) { compile_syntax_error(comp, (mp_parse_node_t)pns, "*x must be assignment target"); } STATIC void compile_binary_op(compiler_t *comp, mp_parse_node_struct_t *pns) { MP_STATIC_ASSERT(MP_BINARY_OP_OR + PN_xor_expr - PN_expr == MP_BINARY_OP_XOR); MP_STATIC_ASSERT(MP_BINARY_OP_OR + PN_and_expr - PN_expr == MP_BINARY_OP_AND); mp_binary_op_t binary_op = MP_BINARY_OP_OR + MP_PARSE_NODE_STRUCT_KIND(pns) - PN_expr; int num_nodes = MP_PARSE_NODE_STRUCT_NUM_NODES(pns); compile_node(comp, pns->nodes[0]); for (int i = 1; i < num_nodes; ++i) { compile_node(comp, pns->nodes[i]); EMIT_ARG(binary_op, binary_op); } } STATIC void compile_term(compiler_t *comp, mp_parse_node_struct_t *pns) { int num_nodes = MP_PARSE_NODE_STRUCT_NUM_NODES(pns); compile_node(comp, pns->nodes[0]); for (int i = 1; i + 1 < num_nodes; i += 2) { compile_node(comp, pns->nodes[i + 1]); mp_binary_op_t op; mp_token_kind_t tok = MP_PARSE_NODE_LEAF_ARG(pns->nodes[i]); switch (tok) { case MP_TOKEN_OP_PLUS: op = MP_BINARY_OP_ADD; break; case MP_TOKEN_OP_MINUS: op = MP_BINARY_OP_SUBTRACT; break; case MP_TOKEN_OP_STAR: op = MP_BINARY_OP_MULTIPLY; break; case MP_TOKEN_OP_DBL_SLASH: op = MP_BINARY_OP_FLOOR_DIVIDE; break; case MP_TOKEN_OP_SLASH: op = MP_BINARY_OP_TRUE_DIVIDE; break; case MP_TOKEN_OP_PERCENT: op = MP_BINARY_OP_MODULO; break; case MP_TOKEN_OP_DBL_LESS: op = MP_BINARY_OP_LSHIFT; break; default: assert(tok == MP_TOKEN_OP_DBL_MORE); op = MP_BINARY_OP_RSHIFT; break; } EMIT_ARG(binary_op, op); } } STATIC void compile_factor_2(compiler_t *comp, mp_parse_node_struct_t *pns) { compile_node(comp, pns->nodes[1]); mp_unary_op_t op; mp_token_kind_t tok = MP_PARSE_NODE_LEAF_ARG(pns->nodes[0]); switch (tok) { case MP_TOKEN_OP_PLUS: op = MP_UNARY_OP_POSITIVE; break; case MP_TOKEN_OP_MINUS: op = MP_UNARY_OP_NEGATIVE; break; default: assert(tok == MP_TOKEN_OP_TILDE); op = MP_UNARY_OP_INVERT; break; } EMIT_ARG(unary_op, op); } STATIC void compile_atom_expr_normal(compiler_t *comp, mp_parse_node_struct_t *pns) { // compile the subject of the expression compile_node(comp, pns->nodes[0]); // compile_atom_expr_await may call us with a NULL node if (MP_PARSE_NODE_IS_NULL(pns->nodes[1])) { return; } // get the array of trailers (known to be an array of PARSE_NODE_STRUCT) size_t num_trail = 1; mp_parse_node_struct_t **pns_trail = (mp_parse_node_struct_t**)&pns->nodes[1]; if (MP_PARSE_NODE_STRUCT_KIND(pns_trail[0]) == PN_atom_expr_trailers) { num_trail = MP_PARSE_NODE_STRUCT_NUM_NODES(pns_trail[0]); pns_trail = (mp_parse_node_struct_t**)&pns_trail[0]->nodes[0]; } // the current index into the array of trailers size_t i = 0; // handle special super() call if (comp->scope_cur->kind == SCOPE_FUNCTION && MP_PARSE_NODE_IS_ID(pns->nodes[0]) && MP_PARSE_NODE_LEAF_ARG(pns->nodes[0]) == MP_QSTR_super && MP_PARSE_NODE_STRUCT_KIND(pns_trail[0]) == PN_trailer_paren && MP_PARSE_NODE_IS_NULL(pns_trail[0]->nodes[0])) { // at this point we have matched "super()" within a function // load the class for super to search for a parent compile_load_id(comp, MP_QSTR___class__); // look for first argument to function (assumes it's "self") bool found = false; id_info_t *id = &comp->scope_cur->id_info[0]; for (size_t n = comp->scope_cur->id_info_len; n > 0; --n, ++id) { if (id->flags & ID_FLAG_IS_PARAM) { // first argument found; load it compile_load_id(comp, id->qst); found = true; break; } } if (!found) { compile_syntax_error(comp, (mp_parse_node_t)pns_trail[0], "super() can't find self"); // really a TypeError return; } if (num_trail >= 3 && MP_PARSE_NODE_STRUCT_KIND(pns_trail[1]) == PN_trailer_period && MP_PARSE_NODE_STRUCT_KIND(pns_trail[2]) == PN_trailer_paren) { // optimisation for method calls super().f(...), to eliminate heap allocation mp_parse_node_struct_t *pns_period = pns_trail[1]; mp_parse_node_struct_t *pns_paren = pns_trail[2]; EMIT_ARG(load_method, MP_PARSE_NODE_LEAF_ARG(pns_period->nodes[0]), true); compile_trailer_paren_helper(comp, pns_paren->nodes[0], true, 0); i = 3; } else { // a super() call EMIT_ARG(call_function, 2, 0, 0); i = 1; } } // compile the remaining trailers for (; i < num_trail; i++) { if (i + 1 < num_trail && MP_PARSE_NODE_STRUCT_KIND(pns_trail[i]) == PN_trailer_period && MP_PARSE_NODE_STRUCT_KIND(pns_trail[i + 1]) == PN_trailer_paren) { // optimisation for method calls a.f(...), following PyPy mp_parse_node_struct_t *pns_period = pns_trail[i]; mp_parse_node_struct_t *pns_paren = pns_trail[i + 1]; EMIT_ARG(load_method, MP_PARSE_NODE_LEAF_ARG(pns_period->nodes[0]), false); compile_trailer_paren_helper(comp, pns_paren->nodes[0], true, 0); i += 1; } else { // node is one of: trailer_paren, trailer_bracket, trailer_period compile_node(comp, (mp_parse_node_t)pns_trail[i]); } } } STATIC void compile_power(compiler_t *comp, mp_parse_node_struct_t *pns) { compile_generic_all_nodes(comp, pns); // 2 nodes, arguments of power EMIT_ARG(binary_op, MP_BINARY_OP_POWER); } STATIC void compile_trailer_paren_helper(compiler_t *comp, mp_parse_node_t pn_arglist, bool is_method_call, int n_positional_extra) { // function to call is on top of stack // get the list of arguments mp_parse_node_t *args; int n_args = mp_parse_node_extract_list(&pn_arglist, PN_arglist, &args); // compile the arguments // Rather than calling compile_node on the list, we go through the list of args // explicitly here so that we can count the number of arguments and give sensible // error messages. int n_positional = n_positional_extra; uint n_keyword = 0; uint star_flags = 0; mp_parse_node_struct_t *star_args_node = NULL, *dblstar_args_node = NULL; for (int i = 0; i < n_args; i++) { if (MP_PARSE_NODE_IS_STRUCT(args[i])) { mp_parse_node_struct_t *pns_arg = (mp_parse_node_struct_t*)args[i]; if (MP_PARSE_NODE_STRUCT_KIND(pns_arg) == PN_arglist_star) { if (star_flags & MP_EMIT_STAR_FLAG_SINGLE) { compile_syntax_error(comp, (mp_parse_node_t)pns_arg, "can't have multiple *x"); return; } star_flags |= MP_EMIT_STAR_FLAG_SINGLE; star_args_node = pns_arg; } else if (MP_PARSE_NODE_STRUCT_KIND(pns_arg) == PN_arglist_dbl_star) { if (star_flags & MP_EMIT_STAR_FLAG_DOUBLE) { compile_syntax_error(comp, (mp_parse_node_t)pns_arg, "can't have multiple **x"); return; } star_flags |= MP_EMIT_STAR_FLAG_DOUBLE; dblstar_args_node = pns_arg; } else if (MP_PARSE_NODE_STRUCT_KIND(pns_arg) == PN_argument) { if (!MP_PARSE_NODE_IS_STRUCT_KIND(pns_arg->nodes[1], PN_comp_for)) { if (!MP_PARSE_NODE_IS_ID(pns_arg->nodes[0])) { compile_syntax_error(comp, (mp_parse_node_t)pns_arg, "LHS of keyword arg must be an id"); return; } EMIT_ARG(load_const_str, MP_PARSE_NODE_LEAF_ARG(pns_arg->nodes[0])); compile_node(comp, pns_arg->nodes[1]); n_keyword += 1; } else { compile_comprehension(comp, pns_arg, SCOPE_GEN_EXPR); n_positional++; } } else { goto normal_argument; } } else { normal_argument: if (star_flags) { compile_syntax_error(comp, args[i], "non-keyword arg after */**"); return; } if (n_keyword > 0) { compile_syntax_error(comp, args[i], "non-keyword arg after keyword arg"); return; } compile_node(comp, args[i]); n_positional++; } } // compile the star/double-star arguments if we had them // if we had one but not the other then we load "null" as a place holder if (star_flags != 0) { if (star_args_node == NULL) { EMIT(load_null); } else { compile_node(comp, star_args_node->nodes[0]); } if (dblstar_args_node == NULL) { EMIT(load_null); } else { compile_node(comp, dblstar_args_node->nodes[0]); } } // emit the function/method call if (is_method_call) { EMIT_ARG(call_method, n_positional, n_keyword, star_flags); } else { EMIT_ARG(call_function, n_positional, n_keyword, star_flags); } } // pns needs to have 2 nodes, first is lhs of comprehension, second is PN_comp_for node STATIC void compile_comprehension(compiler_t *comp, mp_parse_node_struct_t *pns, scope_kind_t kind) { assert(MP_PARSE_NODE_STRUCT_NUM_NODES(pns) == 2); assert(MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[1], PN_comp_for)); mp_parse_node_struct_t *pns_comp_for = (mp_parse_node_struct_t*)pns->nodes[1]; if (comp->pass == MP_PASS_SCOPE) { // create a new scope for this comprehension scope_t *s = scope_new_and_link(comp, kind, (mp_parse_node_t)pns, comp->scope_cur->emit_options); // store the comprehension scope so the compiling function (this one) can use it at each pass pns_comp_for->nodes[3] = (mp_parse_node_t)s; } // get the scope for this comprehension scope_t *this_scope = (scope_t*)pns_comp_for->nodes[3]; // compile the comprehension close_over_variables_etc(comp, this_scope, 0, 0); compile_node(comp, pns_comp_for->nodes[1]); // source of the iterator if (kind == SCOPE_GEN_EXPR) { EMIT_ARG(get_iter, false); } EMIT_ARG(call_function, 1, 0, 0); } STATIC void compile_atom_paren(compiler_t *comp, mp_parse_node_struct_t *pns) { if (MP_PARSE_NODE_IS_NULL(pns->nodes[0])) { // an empty tuple c_tuple(comp, MP_PARSE_NODE_NULL, NULL); } else { assert(MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_testlist_comp)); pns = (mp_parse_node_struct_t*)pns->nodes[0]; assert(!MP_PARSE_NODE_IS_NULL(pns->nodes[1])); if (MP_PARSE_NODE_IS_STRUCT(pns->nodes[1])) { mp_parse_node_struct_t *pns2 = (mp_parse_node_struct_t*)pns->nodes[1]; if (MP_PARSE_NODE_STRUCT_KIND(pns2) == PN_testlist_comp_3b) { // tuple of one item, with trailing comma assert(MP_PARSE_NODE_IS_NULL(pns2->nodes[0])); c_tuple(comp, pns->nodes[0], NULL); } else if (MP_PARSE_NODE_STRUCT_KIND(pns2) == PN_testlist_comp_3c) { // tuple of many items c_tuple(comp, pns->nodes[0], pns2); } else if (MP_PARSE_NODE_STRUCT_KIND(pns2) == PN_comp_for) { // generator expression compile_comprehension(comp, pns, SCOPE_GEN_EXPR); } else { // tuple with 2 items goto tuple_with_2_items; } } else { // tuple with 2 items tuple_with_2_items: c_tuple(comp, MP_PARSE_NODE_NULL, pns); } } } STATIC void compile_atom_bracket(compiler_t *comp, mp_parse_node_struct_t *pns) { if (MP_PARSE_NODE_IS_NULL(pns->nodes[0])) { // empty list EMIT_ARG(build, 0, MP_EMIT_BUILD_LIST); } else if (MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_testlist_comp)) { mp_parse_node_struct_t *pns2 = (mp_parse_node_struct_t*)pns->nodes[0]; if (MP_PARSE_NODE_IS_STRUCT(pns2->nodes[1])) { mp_parse_node_struct_t *pns3 = (mp_parse_node_struct_t*)pns2->nodes[1]; if (MP_PARSE_NODE_STRUCT_KIND(pns3) == PN_testlist_comp_3b) { // list of one item, with trailing comma assert(MP_PARSE_NODE_IS_NULL(pns3->nodes[0])); compile_node(comp, pns2->nodes[0]); EMIT_ARG(build, 1, MP_EMIT_BUILD_LIST); } else if (MP_PARSE_NODE_STRUCT_KIND(pns3) == PN_testlist_comp_3c) { // list of many items compile_node(comp, pns2->nodes[0]); compile_generic_all_nodes(comp, pns3); EMIT_ARG(build, 1 + MP_PARSE_NODE_STRUCT_NUM_NODES(pns3), MP_EMIT_BUILD_LIST); } else if (MP_PARSE_NODE_STRUCT_KIND(pns3) == PN_comp_for) { // list comprehension compile_comprehension(comp, pns2, SCOPE_LIST_COMP); } else { // list with 2 items goto list_with_2_items; } } else { // list with 2 items list_with_2_items: compile_node(comp, pns2->nodes[0]); compile_node(comp, pns2->nodes[1]); EMIT_ARG(build, 2, MP_EMIT_BUILD_LIST); } } else { // list with 1 item compile_node(comp, pns->nodes[0]); EMIT_ARG(build, 1, MP_EMIT_BUILD_LIST); } } STATIC void compile_atom_brace(compiler_t *comp, mp_parse_node_struct_t *pns) { mp_parse_node_t pn = pns->nodes[0]; if (MP_PARSE_NODE_IS_NULL(pn)) { // empty dict EMIT_ARG(build, 0, MP_EMIT_BUILD_MAP); } else if (MP_PARSE_NODE_IS_STRUCT(pn)) { pns = (mp_parse_node_struct_t*)pn; if (MP_PARSE_NODE_STRUCT_KIND(pns) == PN_dictorsetmaker_item) { // dict with one element EMIT_ARG(build, 1, MP_EMIT_BUILD_MAP); compile_node(comp, pn); EMIT(store_map); } else if (MP_PARSE_NODE_STRUCT_KIND(pns) == PN_dictorsetmaker) { assert(MP_PARSE_NODE_IS_STRUCT(pns->nodes[1])); // should succeed mp_parse_node_struct_t *pns1 = (mp_parse_node_struct_t*)pns->nodes[1]; if (MP_PARSE_NODE_STRUCT_KIND(pns1) == PN_dictorsetmaker_list) { // dict/set with multiple elements // get tail elements (2nd, 3rd, ...) mp_parse_node_t *nodes; int n = mp_parse_node_extract_list(&pns1->nodes[0], PN_dictorsetmaker_list2, &nodes); // first element sets whether it's a dict or set bool is_dict; if (!MICROPY_PY_BUILTINS_SET || MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_dictorsetmaker_item)) { // a dictionary EMIT_ARG(build, 1 + n, MP_EMIT_BUILD_MAP); compile_node(comp, pns->nodes[0]); EMIT(store_map); is_dict = true; } else { // a set compile_node(comp, pns->nodes[0]); // 1st value of set is_dict = false; } // process rest of elements for (int i = 0; i < n; i++) { mp_parse_node_t pn_i = nodes[i]; bool is_key_value = MP_PARSE_NODE_IS_STRUCT_KIND(pn_i, PN_dictorsetmaker_item); compile_node(comp, pn_i); if (is_dict) { if (!is_key_value) { if (MICROPY_ERROR_REPORTING == MICROPY_ERROR_REPORTING_TERSE) { compile_syntax_error(comp, (mp_parse_node_t)pns, "invalid syntax"); } else { compile_syntax_error(comp, (mp_parse_node_t)pns, "expecting key:value for dict"); } return; } EMIT(store_map); } else { if (is_key_value) { if (MICROPY_ERROR_REPORTING == MICROPY_ERROR_REPORTING_TERSE) { compile_syntax_error(comp, (mp_parse_node_t)pns, "invalid syntax"); } else { compile_syntax_error(comp, (mp_parse_node_t)pns, "expecting just a value for set"); } return; } } } #if MICROPY_PY_BUILTINS_SET // if it's a set, build it if (!is_dict) { EMIT_ARG(build, 1 + n, MP_EMIT_BUILD_SET); } #endif } else { assert(MP_PARSE_NODE_STRUCT_KIND(pns1) == PN_comp_for); // should be // dict/set comprehension if (!MICROPY_PY_BUILTINS_SET || MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_dictorsetmaker_item)) { // a dictionary comprehension compile_comprehension(comp, pns, SCOPE_DICT_COMP); } else { // a set comprehension compile_comprehension(comp, pns, SCOPE_SET_COMP); } } } else { // set with one element goto set_with_one_element; } } else { // set with one element set_with_one_element: #if MICROPY_PY_BUILTINS_SET compile_node(comp, pn); EMIT_ARG(build, 1, MP_EMIT_BUILD_SET); #else assert(0); #endif } } STATIC void compile_trailer_paren(compiler_t *comp, mp_parse_node_struct_t *pns) { compile_trailer_paren_helper(comp, pns->nodes[0], false, 0); } STATIC void compile_trailer_bracket(compiler_t *comp, mp_parse_node_struct_t *pns) { // object who's index we want is on top of stack compile_node(comp, pns->nodes[0]); // the index EMIT_ARG(subscr, MP_EMIT_SUBSCR_LOAD); } STATIC void compile_trailer_period(compiler_t *comp, mp_parse_node_struct_t *pns) { // object who's attribute we want is on top of stack EMIT_ARG(attr, MP_PARSE_NODE_LEAF_ARG(pns->nodes[0]), MP_EMIT_ATTR_LOAD); // attribute to get } #if MICROPY_PY_BUILTINS_SLICE STATIC void compile_subscript(compiler_t *comp, mp_parse_node_struct_t *pns) { if (MP_PARSE_NODE_STRUCT_KIND(pns) == PN_subscript_2) { compile_node(comp, pns->nodes[0]); // start of slice assert(MP_PARSE_NODE_IS_STRUCT(pns->nodes[1])); // should always be pns = (mp_parse_node_struct_t*)pns->nodes[1]; } else { // pns is a PN_subscript_3, load None for start of slice EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE); } assert(MP_PARSE_NODE_STRUCT_KIND(pns) == PN_subscript_3); // should always be mp_parse_node_t pn = pns->nodes[0]; if (MP_PARSE_NODE_IS_NULL(pn)) { // [?:] EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE); EMIT_ARG(build, 2, MP_EMIT_BUILD_SLICE); } else if (MP_PARSE_NODE_IS_STRUCT(pn)) { pns = (mp_parse_node_struct_t*)pn; if (MP_PARSE_NODE_STRUCT_KIND(pns) == PN_subscript_3c) { EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE); pn = pns->nodes[0]; if (MP_PARSE_NODE_IS_NULL(pn)) { // [?::] EMIT_ARG(build, 2, MP_EMIT_BUILD_SLICE); } else { // [?::x] compile_node(comp, pn); EMIT_ARG(build, 3, MP_EMIT_BUILD_SLICE); } } else if (MP_PARSE_NODE_STRUCT_KIND(pns) == PN_subscript_3d) { compile_node(comp, pns->nodes[0]); assert(MP_PARSE_NODE_IS_STRUCT(pns->nodes[1])); // should always be pns = (mp_parse_node_struct_t*)pns->nodes[1]; assert(MP_PARSE_NODE_STRUCT_KIND(pns) == PN_sliceop); // should always be if (MP_PARSE_NODE_IS_NULL(pns->nodes[0])) { // [?:x:] EMIT_ARG(build, 2, MP_EMIT_BUILD_SLICE); } else { // [?:x:x] compile_node(comp, pns->nodes[0]); EMIT_ARG(build, 3, MP_EMIT_BUILD_SLICE); } } else { // [?:x] compile_node(comp, pn); EMIT_ARG(build, 2, MP_EMIT_BUILD_SLICE); } } else { // [?:x] compile_node(comp, pn); EMIT_ARG(build, 2, MP_EMIT_BUILD_SLICE); } } #endif // MICROPY_PY_BUILTINS_SLICE STATIC void compile_dictorsetmaker_item(compiler_t *comp, mp_parse_node_struct_t *pns) { // if this is called then we are compiling a dict key:value pair compile_node(comp, pns->nodes[1]); // value compile_node(comp, pns->nodes[0]); // key } STATIC void compile_classdef(compiler_t *comp, mp_parse_node_struct_t *pns) { qstr cname = compile_classdef_helper(comp, pns, comp->scope_cur->emit_options); // store class object into class name compile_store_id(comp, cname); } STATIC void compile_yield_expr(compiler_t *comp, mp_parse_node_struct_t *pns) { if (comp->scope_cur->kind != SCOPE_FUNCTION && comp->scope_cur->kind != SCOPE_LAMBDA) { compile_syntax_error(comp, (mp_parse_node_t)pns, "'yield' outside function"); return; } if (MP_PARSE_NODE_IS_NULL(pns->nodes[0])) { EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE); EMIT_ARG(yield, MP_EMIT_YIELD_VALUE); reserve_labels_for_native(comp, 1); } else if (MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_yield_arg_from)) { pns = (mp_parse_node_struct_t*)pns->nodes[0]; compile_node(comp, pns->nodes[0]); compile_yield_from(comp); } else { compile_node(comp, pns->nodes[0]); EMIT_ARG(yield, MP_EMIT_YIELD_VALUE); reserve_labels_for_native(comp, 1); } } #if MICROPY_PY_ASYNC_AWAIT STATIC void compile_atom_expr_await(compiler_t *comp, mp_parse_node_struct_t *pns) { if (comp->scope_cur->kind != SCOPE_FUNCTION && comp->scope_cur->kind != SCOPE_LAMBDA) { compile_syntax_error(comp, (mp_parse_node_t)pns, "'await' outside function"); return; } compile_atom_expr_normal(comp, pns); compile_yield_from(comp); } #endif STATIC mp_obj_t get_const_object(mp_parse_node_struct_t *pns) { #if MICROPY_OBJ_REPR == MICROPY_OBJ_REPR_D // nodes are 32-bit pointers, but need to extract 64-bit object return (uint64_t)pns->nodes[0] | ((uint64_t)pns->nodes[1] << 32); #else return (mp_obj_t)pns->nodes[0]; #endif } STATIC void compile_const_object(compiler_t *comp, mp_parse_node_struct_t *pns) { #if MICROPY_EMIT_NATIVE comp->scope_cur->scope_flags |= MP_SCOPE_FLAG_HASCONSTS; #endif EMIT_ARG(load_const_obj, get_const_object(pns)); } typedef void (*compile_function_t)(compiler_t*, mp_parse_node_struct_t*); STATIC const compile_function_t compile_function[] = { // only define rules with a compile function #define c(f) compile_##f #define DEF_RULE(rule, comp, kind, ...) comp, #define DEF_RULE_NC(rule, kind, ...) #include "py/grammar.h" #undef c #undef DEF_RULE #undef DEF_RULE_NC compile_const_object, }; STATIC void compile_node(compiler_t *comp, mp_parse_node_t pn) { if (MP_PARSE_NODE_IS_NULL(pn)) { // pass } else if (MP_PARSE_NODE_IS_SMALL_INT(pn)) { mp_int_t arg = MP_PARSE_NODE_LEAF_SMALL_INT(pn); #if MICROPY_DYNAMIC_COMPILER mp_uint_t sign_mask = -((mp_uint_t)1 << (mp_dynamic_compiler.small_int_bits - 1)); if ((arg & sign_mask) == 0 || (arg & sign_mask) == sign_mask) { // integer fits in target runtime's small-int EMIT_ARG(load_const_small_int, arg); } else { // integer doesn't fit, so create a multi-precision int object // (but only create the actual object on the last pass) if (comp->pass != MP_PASS_EMIT) { EMIT_ARG(load_const_obj, mp_const_none); } else { EMIT_ARG(load_const_obj, mp_obj_new_int_from_ll(arg)); } #if MICROPY_EMIT_NATIVE comp->scope_cur->scope_flags |= MP_SCOPE_FLAG_HASCONSTS; #endif } #else EMIT_ARG(load_const_small_int, arg); #endif } else if (MP_PARSE_NODE_IS_LEAF(pn)) { uintptr_t arg = MP_PARSE_NODE_LEAF_ARG(pn); switch (MP_PARSE_NODE_LEAF_KIND(pn)) { case MP_PARSE_NODE_ID: compile_load_id(comp, arg); break; case MP_PARSE_NODE_STRING: EMIT_ARG(load_const_str, arg); break; case MP_PARSE_NODE_BYTES: // only create and load the actual bytes object on the last pass if (comp->pass != MP_PASS_EMIT) { EMIT_ARG(load_const_obj, mp_const_none); } else { size_t len; const byte *data = qstr_data(arg, &len); EMIT_ARG(load_const_obj, mp_obj_new_bytes(data, len)); } #if MICROPY_EMIT_NATIVE comp->scope_cur->scope_flags |= MP_SCOPE_FLAG_HASCONSTS; #endif break; case MP_PARSE_NODE_TOKEN: default: if (arg == MP_TOKEN_NEWLINE) { // this can occur when file_input lets through a NEWLINE (eg if file starts with a newline) // or when single_input lets through a NEWLINE (user enters a blank line) // do nothing } else { EMIT_ARG(load_const_tok, arg); } break; } } else { mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)pn; EMIT_ARG(set_source_line, pns->source_line); assert(MP_PARSE_NODE_STRUCT_KIND(pns) <= PN_const_object); compile_function_t f = compile_function[MP_PARSE_NODE_STRUCT_KIND(pns)]; f(comp, pns); } } #if MICROPY_EMIT_NATIVE STATIC int compile_viper_type_annotation(compiler_t *comp, mp_parse_node_t pn_annotation) { int native_type = MP_NATIVE_TYPE_OBJ; if (MP_PARSE_NODE_IS_NULL(pn_annotation)) { // No annotation, type defaults to object } else if (MP_PARSE_NODE_IS_ID(pn_annotation)) { qstr type_name = MP_PARSE_NODE_LEAF_ARG(pn_annotation); native_type = mp_native_type_from_qstr(type_name); if (native_type < 0) { comp->compile_error = mp_obj_new_exception_msg_varg(&mp_type_ViperTypeError, "unknown type '%q'", type_name); native_type = 0; } } else { compile_syntax_error(comp, pn_annotation, "annotation must be an identifier"); } return native_type; } #endif STATIC void compile_scope_func_lambda_param(compiler_t *comp, mp_parse_node_t pn, pn_kind_t pn_name, pn_kind_t pn_star, pn_kind_t pn_dbl_star) { // check that **kw is last if ((comp->scope_cur->scope_flags & MP_SCOPE_FLAG_VARKEYWORDS) != 0) { compile_syntax_error(comp, pn, "invalid syntax"); return; } qstr param_name = MP_QSTR_NULL; uint param_flag = ID_FLAG_IS_PARAM; mp_parse_node_struct_t *pns = NULL; if (MP_PARSE_NODE_IS_ID(pn)) { param_name = MP_PARSE_NODE_LEAF_ARG(pn); if (comp->have_star) { // comes after a star, so counts as a keyword-only parameter comp->scope_cur->num_kwonly_args += 1; } else { // comes before a star, so counts as a positional parameter comp->scope_cur->num_pos_args += 1; } } else { assert(MP_PARSE_NODE_IS_STRUCT(pn)); pns = (mp_parse_node_struct_t*)pn; if (MP_PARSE_NODE_STRUCT_KIND(pns) == pn_name) { // named parameter with possible annotation param_name = MP_PARSE_NODE_LEAF_ARG(pns->nodes[0]); if (comp->have_star) { // comes after a star, so counts as a keyword-only parameter comp->scope_cur->num_kwonly_args += 1; } else { // comes before a star, so counts as a positional parameter comp->scope_cur->num_pos_args += 1; } } else if (MP_PARSE_NODE_STRUCT_KIND(pns) == pn_star) { if (comp->have_star) { // more than one star compile_syntax_error(comp, pn, "invalid syntax"); return; } comp->have_star = true; param_flag = ID_FLAG_IS_PARAM | ID_FLAG_IS_STAR_PARAM; if (MP_PARSE_NODE_IS_NULL(pns->nodes[0])) { // bare star // TODO see http://www.python.org/dev/peps/pep-3102/ //assert(comp->scope_cur->num_dict_params == 0); pns = NULL; } else if (MP_PARSE_NODE_IS_ID(pns->nodes[0])) { // named star comp->scope_cur->scope_flags |= MP_SCOPE_FLAG_VARARGS; param_name = MP_PARSE_NODE_LEAF_ARG(pns->nodes[0]); pns = NULL; } else { assert(MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_tfpdef)); // should be // named star with possible annotation comp->scope_cur->scope_flags |= MP_SCOPE_FLAG_VARARGS; pns = (mp_parse_node_struct_t*)pns->nodes[0]; param_name = MP_PARSE_NODE_LEAF_ARG(pns->nodes[0]); } } else { // double star with possible annotation assert(MP_PARSE_NODE_STRUCT_KIND(pns) == pn_dbl_star); // should be param_name = MP_PARSE_NODE_LEAF_ARG(pns->nodes[0]); param_flag = ID_FLAG_IS_PARAM | ID_FLAG_IS_DBL_STAR_PARAM; comp->scope_cur->scope_flags |= MP_SCOPE_FLAG_VARKEYWORDS; } } if (param_name != MP_QSTR_NULL) { bool added; id_info_t *id_info = scope_find_or_add_id(comp->scope_cur, param_name, &added); if (!added) { compile_syntax_error(comp, pn, "argument name reused"); return; } id_info->kind = ID_INFO_KIND_LOCAL; id_info->flags = param_flag; #if MICROPY_EMIT_NATIVE if (comp->scope_cur->emit_options == MP_EMIT_OPT_VIPER && pn_name == PN_typedargslist_name && pns != NULL) { id_info->flags |= compile_viper_type_annotation(comp, pns->nodes[1]) << ID_FLAG_VIPER_TYPE_POS; } #else (void)pns; #endif } } STATIC void compile_scope_func_param(compiler_t *comp, mp_parse_node_t pn) { compile_scope_func_lambda_param(comp, pn, PN_typedargslist_name, PN_typedargslist_star, PN_typedargslist_dbl_star); } STATIC void compile_scope_lambda_param(compiler_t *comp, mp_parse_node_t pn) { compile_scope_func_lambda_param(comp, pn, PN_varargslist_name, PN_varargslist_star, PN_varargslist_dbl_star); } STATIC void compile_scope_comp_iter(compiler_t *comp, mp_parse_node_struct_t *pns_comp_for, mp_parse_node_t pn_inner_expr, int for_depth) { uint l_top = comp_next_label(comp); uint l_end = comp_next_label(comp); EMIT_ARG(label_assign, l_top); EMIT_ARG(for_iter, l_end); c_assign(comp, pns_comp_for->nodes[0], ASSIGN_STORE); mp_parse_node_t pn_iter = pns_comp_for->nodes[2]; tail_recursion: if (MP_PARSE_NODE_IS_NULL(pn_iter)) { // no more nested if/for; compile inner expression compile_node(comp, pn_inner_expr); if (comp->scope_cur->kind == SCOPE_GEN_EXPR) { EMIT_ARG(yield, MP_EMIT_YIELD_VALUE); reserve_labels_for_native(comp, 1); EMIT(pop_top); } else { EMIT_ARG(store_comp, comp->scope_cur->kind, 4 * for_depth + 5); } } else if (MP_PARSE_NODE_STRUCT_KIND((mp_parse_node_struct_t*)pn_iter) == PN_comp_if) { // if condition mp_parse_node_struct_t *pns_comp_if = (mp_parse_node_struct_t*)pn_iter; c_if_cond(comp, pns_comp_if->nodes[0], false, l_top); pn_iter = pns_comp_if->nodes[1]; goto tail_recursion; } else { assert(MP_PARSE_NODE_STRUCT_KIND((mp_parse_node_struct_t*)pn_iter) == PN_comp_for); // should be // for loop mp_parse_node_struct_t *pns_comp_for2 = (mp_parse_node_struct_t*)pn_iter; compile_node(comp, pns_comp_for2->nodes[1]); EMIT_ARG(get_iter, true); compile_scope_comp_iter(comp, pns_comp_for2, pn_inner_expr, for_depth + 1); } EMIT_ARG(jump, l_top); EMIT_ARG(label_assign, l_end); EMIT(for_iter_end); } STATIC void check_for_doc_string(compiler_t *comp, mp_parse_node_t pn) { #if MICROPY_ENABLE_DOC_STRING // see http://www.python.org/dev/peps/pep-0257/ // look for the first statement if (MP_PARSE_NODE_IS_STRUCT_KIND(pn, PN_expr_stmt)) { // a statement; fall through } else if (MP_PARSE_NODE_IS_STRUCT_KIND(pn, PN_file_input_2)) { // file input; find the first non-newline node mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)pn; int num_nodes = MP_PARSE_NODE_STRUCT_NUM_NODES(pns); for (int i = 0; i < num_nodes; i++) { pn = pns->nodes[i]; if (!(MP_PARSE_NODE_IS_LEAF(pn) && MP_PARSE_NODE_LEAF_KIND(pn) == MP_PARSE_NODE_TOKEN && MP_PARSE_NODE_LEAF_ARG(pn) == MP_TOKEN_NEWLINE)) { // not a newline, so this is the first statement; finish search break; } } // if we didn't find a non-newline then it's okay to fall through; pn will be a newline and so doc-string test below will fail gracefully } else if (MP_PARSE_NODE_IS_STRUCT_KIND(pn, PN_suite_block_stmts)) { // a list of statements; get the first one pn = ((mp_parse_node_struct_t*)pn)->nodes[0]; } else { return; } // check the first statement for a doc string if (MP_PARSE_NODE_IS_STRUCT_KIND(pn, PN_expr_stmt)) { mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)pn; if ((MP_PARSE_NODE_IS_LEAF(pns->nodes[0]) && MP_PARSE_NODE_LEAF_KIND(pns->nodes[0]) == MP_PARSE_NODE_STRING) || (MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_const_object) && MP_OBJ_IS_STR(get_const_object((mp_parse_node_struct_t*)pns->nodes[0])))) { // compile the doc string compile_node(comp, pns->nodes[0]); // store the doc string compile_store_id(comp, MP_QSTR___doc__); } } #else (void)comp; (void)pn; #endif } STATIC void compile_scope(compiler_t *comp, scope_t *scope, pass_kind_t pass) { comp->pass = pass; comp->scope_cur = scope; comp->next_label = 0; EMIT_ARG(start_pass, pass, scope); reserve_labels_for_native(comp, 6); // used by native's start_pass if (comp->pass == MP_PASS_SCOPE) { // reset maximum stack sizes in scope // they will be computed in this first pass scope->stack_size = 0; scope->exc_stack_size = 0; } // compile if (MP_PARSE_NODE_IS_STRUCT_KIND(scope->pn, PN_eval_input)) { assert(scope->kind == SCOPE_MODULE); mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)scope->pn; compile_node(comp, pns->nodes[0]); // compile the expression EMIT(return_value); } else if (scope->kind == SCOPE_MODULE) { if (!comp->is_repl) { check_for_doc_string(comp, scope->pn); } compile_node(comp, scope->pn); EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE); EMIT(return_value); } else if (scope->kind == SCOPE_FUNCTION) { assert(MP_PARSE_NODE_IS_STRUCT(scope->pn)); mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)scope->pn; assert(MP_PARSE_NODE_STRUCT_KIND(pns) == PN_funcdef); // work out number of parameters, keywords and default parameters, and add them to the id_info array // must be done before compiling the body so that arguments are numbered first (for LOAD_FAST etc) if (comp->pass == MP_PASS_SCOPE) { comp->have_star = false; apply_to_single_or_list(comp, pns->nodes[1], PN_typedargslist, compile_scope_func_param); #if MICROPY_EMIT_NATIVE if (scope->emit_options == MP_EMIT_OPT_VIPER) { // Compile return type; pns->nodes[2] is return/whole function annotation scope->scope_flags |= compile_viper_type_annotation(comp, pns->nodes[2]) << MP_SCOPE_FLAG_VIPERRET_POS; } #endif // MICROPY_EMIT_NATIVE } compile_node(comp, pns->nodes[3]); // 3 is function body // emit return if it wasn't the last opcode if (!EMIT(last_emit_was_return_value)) { EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE); EMIT(return_value); } } else if (scope->kind == SCOPE_LAMBDA) { assert(MP_PARSE_NODE_IS_STRUCT(scope->pn)); mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)scope->pn; assert(MP_PARSE_NODE_STRUCT_NUM_NODES(pns) == 3); // work out number of parameters, keywords and default parameters, and add them to the id_info array // must be done before compiling the body so that arguments are numbered first (for LOAD_FAST etc) if (comp->pass == MP_PASS_SCOPE) { comp->have_star = false; apply_to_single_or_list(comp, pns->nodes[0], PN_varargslist, compile_scope_lambda_param); } compile_node(comp, pns->nodes[1]); // 1 is lambda body // if the lambda is a generator, then we return None, not the result of the expression of the lambda if (scope->scope_flags & MP_SCOPE_FLAG_GENERATOR) { EMIT(pop_top); EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE); } EMIT(return_value); } else if (scope->kind == SCOPE_LIST_COMP || scope->kind == SCOPE_DICT_COMP || scope->kind == SCOPE_SET_COMP || scope->kind == SCOPE_GEN_EXPR) { // a bit of a hack at the moment assert(MP_PARSE_NODE_IS_STRUCT(scope->pn)); mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)scope->pn; assert(MP_PARSE_NODE_STRUCT_NUM_NODES(pns) == 2); assert(MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[1], PN_comp_for)); mp_parse_node_struct_t *pns_comp_for = (mp_parse_node_struct_t*)pns->nodes[1]; // We need a unique name for the comprehension argument (the iterator). // CPython uses .0, but we should be able to use anything that won't // clash with a user defined variable. Best to use an existing qstr, // so we use the blank qstr. qstr qstr_arg = MP_QSTR_; if (comp->pass == MP_PASS_SCOPE) { bool added; id_info_t *id_info = scope_find_or_add_id(comp->scope_cur, qstr_arg, &added); assert(added); id_info->kind = ID_INFO_KIND_LOCAL; scope->num_pos_args = 1; } if (scope->kind == SCOPE_LIST_COMP) { EMIT_ARG(build, 0, MP_EMIT_BUILD_LIST); } else if (scope->kind == SCOPE_DICT_COMP) { EMIT_ARG(build, 0, MP_EMIT_BUILD_MAP); #if MICROPY_PY_BUILTINS_SET } else if (scope->kind == SCOPE_SET_COMP) { EMIT_ARG(build, 0, MP_EMIT_BUILD_SET); #endif } // There are 4 slots on the stack for the iterator, and the first one is // NULL to indicate that the second one points to the iterator object. if (scope->kind == SCOPE_GEN_EXPR) { MP_STATIC_ASSERT(MP_OBJ_ITER_BUF_NSLOTS == 4); EMIT(load_null); compile_load_id(comp, qstr_arg); EMIT(load_null); EMIT(load_null); } else { compile_load_id(comp, qstr_arg); EMIT_ARG(get_iter, true); } compile_scope_comp_iter(comp, pns_comp_for, pns->nodes[0], 0); if (scope->kind == SCOPE_GEN_EXPR) { EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE); } EMIT(return_value); } else { assert(scope->kind == SCOPE_CLASS); assert(MP_PARSE_NODE_IS_STRUCT(scope->pn)); mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)scope->pn; assert(MP_PARSE_NODE_STRUCT_KIND(pns) == PN_classdef); if (comp->pass == MP_PASS_SCOPE) { bool added; id_info_t *id_info = scope_find_or_add_id(scope, MP_QSTR___class__, &added); assert(added); id_info->kind = ID_INFO_KIND_LOCAL; } compile_load_id(comp, MP_QSTR___name__); compile_store_id(comp, MP_QSTR___module__); EMIT_ARG(load_const_str, MP_PARSE_NODE_LEAF_ARG(pns->nodes[0])); // 0 is class name compile_store_id(comp, MP_QSTR___qualname__); check_for_doc_string(comp, pns->nodes[2]); compile_node(comp, pns->nodes[2]); // 2 is class body id_info_t *id = scope_find(scope, MP_QSTR___class__); assert(id != NULL); if (id->kind == ID_INFO_KIND_LOCAL) { EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE); } else { EMIT_LOAD_FAST(MP_QSTR___class__, id->local_num); } EMIT(return_value); } EMIT(end_pass); // make sure we match all the exception levels assert(comp->cur_except_level == 0); } #if MICROPY_EMIT_INLINE_ASM // requires 3 passes: SCOPE, CODE_SIZE, EMIT STATIC void compile_scope_inline_asm(compiler_t *comp, scope_t *scope, pass_kind_t pass) { comp->pass = pass; comp->scope_cur = scope; comp->next_label = 0; if (scope->kind != SCOPE_FUNCTION) { compile_syntax_error(comp, MP_PARSE_NODE_NULL, "inline assembler must be a function"); return; } if (comp->pass > MP_PASS_SCOPE) { EMIT_INLINE_ASM_ARG(start_pass, comp->pass, &comp->compile_error); } // get the function definition parse node assert(MP_PARSE_NODE_IS_STRUCT(scope->pn)); mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)scope->pn; assert(MP_PARSE_NODE_STRUCT_KIND(pns) == PN_funcdef); //qstr f_id = MP_PARSE_NODE_LEAF_ARG(pns->nodes[0]); // function name // parameters are in pns->nodes[1] if (comp->pass == MP_PASS_CODE_SIZE) { mp_parse_node_t *pn_params; int n_params = mp_parse_node_extract_list(&pns->nodes[1], PN_typedargslist, &pn_params); scope->num_pos_args = EMIT_INLINE_ASM_ARG(count_params, n_params, pn_params); if (comp->compile_error != MP_OBJ_NULL) { goto inline_asm_error; } } // pns->nodes[2] is function return annotation mp_uint_t type_sig = MP_NATIVE_TYPE_INT; mp_parse_node_t pn_annotation = pns->nodes[2]; if (!MP_PARSE_NODE_IS_NULL(pn_annotation)) { // nodes[2] can be null or a test-expr if (MP_PARSE_NODE_IS_ID(pn_annotation)) { qstr ret_type = MP_PARSE_NODE_LEAF_ARG(pn_annotation); switch (ret_type) { case MP_QSTR_object: type_sig = MP_NATIVE_TYPE_OBJ; break; case MP_QSTR_bool: type_sig = MP_NATIVE_TYPE_BOOL; break; case MP_QSTR_int: type_sig = MP_NATIVE_TYPE_INT; break; case MP_QSTR_uint: type_sig = MP_NATIVE_TYPE_UINT; break; default: compile_syntax_error(comp, pn_annotation, "unknown type"); return; } } else { compile_syntax_error(comp, pn_annotation, "return annotation must be an identifier"); } } mp_parse_node_t pn_body = pns->nodes[3]; // body mp_parse_node_t *nodes; int num = mp_parse_node_extract_list(&pn_body, PN_suite_block_stmts, &nodes); for (int i = 0; i < num; i++) { assert(MP_PARSE_NODE_IS_STRUCT(nodes[i])); mp_parse_node_struct_t *pns2 = (mp_parse_node_struct_t*)nodes[i]; if (MP_PARSE_NODE_STRUCT_KIND(pns2) == PN_pass_stmt) { // no instructions continue; } else if (MP_PARSE_NODE_STRUCT_KIND(pns2) != PN_expr_stmt) { // not an instruction; error not_an_instruction: compile_syntax_error(comp, nodes[i], "expecting an assembler instruction"); return; } // check structure of parse node assert(MP_PARSE_NODE_IS_STRUCT(pns2->nodes[0])); if (!MP_PARSE_NODE_IS_NULL(pns2->nodes[1])) { goto not_an_instruction; } pns2 = (mp_parse_node_struct_t*)pns2->nodes[0]; if (MP_PARSE_NODE_STRUCT_KIND(pns2) != PN_atom_expr_normal) { goto not_an_instruction; } if (!MP_PARSE_NODE_IS_ID(pns2->nodes[0])) { goto not_an_instruction; } if (!MP_PARSE_NODE_IS_STRUCT_KIND(pns2->nodes[1], PN_trailer_paren)) { goto not_an_instruction; } // parse node looks like an instruction // get instruction name and args qstr op = MP_PARSE_NODE_LEAF_ARG(pns2->nodes[0]); pns2 = (mp_parse_node_struct_t*)pns2->nodes[1]; // PN_trailer_paren mp_parse_node_t *pn_arg; int n_args = mp_parse_node_extract_list(&pns2->nodes[0], PN_arglist, &pn_arg); // emit instructions if (op == MP_QSTR_label) { if (!(n_args == 1 && MP_PARSE_NODE_IS_ID(pn_arg[0]))) { compile_syntax_error(comp, nodes[i], "'label' requires 1 argument"); return; } uint lab = comp_next_label(comp); if (pass > MP_PASS_SCOPE) { if (!EMIT_INLINE_ASM_ARG(label, lab, MP_PARSE_NODE_LEAF_ARG(pn_arg[0]))) { compile_syntax_error(comp, nodes[i], "label redefined"); return; } } } else if (op == MP_QSTR_align) { if (!(n_args == 1 && MP_PARSE_NODE_IS_SMALL_INT(pn_arg[0]))) { compile_syntax_error(comp, nodes[i], "'align' requires 1 argument"); return; } if (pass > MP_PASS_SCOPE) { mp_asm_base_align((mp_asm_base_t*)comp->emit_inline_asm, MP_PARSE_NODE_LEAF_SMALL_INT(pn_arg[0])); } } else if (op == MP_QSTR_data) { if (!(n_args >= 2 && MP_PARSE_NODE_IS_SMALL_INT(pn_arg[0]))) { compile_syntax_error(comp, nodes[i], "'data' requires at least 2 arguments"); return; } if (pass > MP_PASS_SCOPE) { mp_int_t bytesize = MP_PARSE_NODE_LEAF_SMALL_INT(pn_arg[0]); for (uint j = 1; j < n_args; j++) { if (!MP_PARSE_NODE_IS_SMALL_INT(pn_arg[j])) { compile_syntax_error(comp, nodes[i], "'data' requires integer arguments"); return; } mp_asm_base_data((mp_asm_base_t*)comp->emit_inline_asm, bytesize, MP_PARSE_NODE_LEAF_SMALL_INT(pn_arg[j])); } } } else { if (pass > MP_PASS_SCOPE) { EMIT_INLINE_ASM_ARG(op, op, n_args, pn_arg); } } if (comp->compile_error != MP_OBJ_NULL) { pns = pns2; // this is the parse node that had the error goto inline_asm_error; } } if (comp->pass > MP_PASS_SCOPE) { EMIT_INLINE_ASM_ARG(end_pass, type_sig); if (comp->pass == MP_PASS_EMIT) { void *f = mp_asm_base_get_code((mp_asm_base_t*)comp->emit_inline_asm); mp_emit_glue_assign_native(comp->scope_cur->raw_code, MP_CODE_NATIVE_ASM, f, mp_asm_base_get_code_size((mp_asm_base_t*)comp->emit_inline_asm), NULL, comp->scope_cur->num_pos_args, 0, type_sig); } } if (comp->compile_error != MP_OBJ_NULL) { // inline assembler had an error; set line for its exception inline_asm_error: comp->compile_error_line = pns->source_line; } } #endif STATIC void scope_compute_things(scope_t *scope) { // in MicroPython we put the *x parameter after all other parameters (except **y) if (scope->scope_flags & MP_SCOPE_FLAG_VARARGS) { id_info_t *id_param = NULL; for (int i = scope->id_info_len - 1; i >= 0; i--) { id_info_t *id = &scope->id_info[i]; if (id->flags & ID_FLAG_IS_STAR_PARAM) { if (id_param != NULL) { // swap star param with last param id_info_t temp = *id_param; *id_param = *id; *id = temp; } break; } else if (id_param == NULL && id->flags == ID_FLAG_IS_PARAM) { id_param = id; } } } // in functions, turn implicit globals into explicit globals // compute the index of each local scope->num_locals = 0; for (int i = 0; i < scope->id_info_len; i++) { id_info_t *id = &scope->id_info[i]; if (scope->kind == SCOPE_CLASS && id->qst == MP_QSTR___class__) { // __class__ is not counted as a local; if it's used then it becomes a ID_INFO_KIND_CELL continue; } if (SCOPE_IS_FUNC_LIKE(scope->kind) && id->kind == ID_INFO_KIND_GLOBAL_IMPLICIT) { id->kind = ID_INFO_KIND_GLOBAL_EXPLICIT; } #if MICROPY_EMIT_NATIVE if (id->kind == ID_INFO_KIND_GLOBAL_EXPLICIT) { // This function makes a reference to a global variable if (scope->emit_options == MP_EMIT_OPT_VIPER && mp_native_type_from_qstr(id->qst) >= MP_NATIVE_TYPE_INT) { // A casting operator in viper mode, not a real global reference } else { scope->scope_flags |= MP_SCOPE_FLAG_REFGLOBALS; } } #endif // params always count for 1 local, even if they are a cell if (id->kind == ID_INFO_KIND_LOCAL || (id->flags & ID_FLAG_IS_PARAM)) { id->local_num = scope->num_locals++; } } // compute the index of cell vars for (int i = 0; i < scope->id_info_len; i++) { id_info_t *id = &scope->id_info[i]; // in MicroPython the cells come right after the fast locals // parameters are not counted here, since they remain at the start // of the locals, even if they are cell vars if (id->kind == ID_INFO_KIND_CELL && !(id->flags & ID_FLAG_IS_PARAM)) { id->local_num = scope->num_locals; scope->num_locals += 1; } } // compute the index of free vars // make sure they are in the order of the parent scope if (scope->parent != NULL) { int num_free = 0; for (int i = 0; i < scope->parent->id_info_len; i++) { id_info_t *id = &scope->parent->id_info[i]; if (id->kind == ID_INFO_KIND_CELL || id->kind == ID_INFO_KIND_FREE) { for (int j = 0; j < scope->id_info_len; j++) { id_info_t *id2 = &scope->id_info[j]; if (id2->kind == ID_INFO_KIND_FREE && id->qst == id2->qst) { assert(!(id2->flags & ID_FLAG_IS_PARAM)); // free vars should not be params // in MicroPython the frees come first, before the params id2->local_num = num_free; num_free += 1; } } } } // in MicroPython shift all other locals after the free locals if (num_free > 0) { for (int i = 0; i < scope->id_info_len; i++) { id_info_t *id = &scope->id_info[i]; if (id->kind != ID_INFO_KIND_FREE || (id->flags & ID_FLAG_IS_PARAM)) { id->local_num += num_free; } } scope->num_pos_args += num_free; // free vars are counted as params for passing them into the function scope->num_locals += num_free; } } } #if !MICROPY_PERSISTENT_CODE_SAVE STATIC #endif mp_raw_code_t *mp_compile_to_raw_code(mp_parse_tree_t *parse_tree, qstr source_file, uint emit_opt, bool is_repl) { // put compiler state on the stack, it's relatively small compiler_t comp_state = {0}; compiler_t *comp = &comp_state; comp->source_file = source_file; comp->is_repl = is_repl; comp->break_label = INVALID_LABEL; comp->continue_label = INVALID_LABEL; // create the module scope scope_t *module_scope = scope_new_and_link(comp, SCOPE_MODULE, parse_tree->root, emit_opt); // create standard emitter; it's used at least for MP_PASS_SCOPE emit_t *emit_bc = emit_bc_new(); // compile pass 1 comp->emit = emit_bc; #if MICROPY_EMIT_NATIVE comp->emit_method_table = &emit_bc_method_table; #endif uint max_num_labels = 0; for (scope_t *s = comp->scope_head; s != NULL && comp->compile_error == MP_OBJ_NULL; s = s->next) { if (false) { #if MICROPY_EMIT_INLINE_ASM } else if (s->emit_options == MP_EMIT_OPT_ASM) { compile_scope_inline_asm(comp, s, MP_PASS_SCOPE); #endif } else { compile_scope(comp, s, MP_PASS_SCOPE); } // update maximim number of labels needed if (comp->next_label > max_num_labels) { max_num_labels = comp->next_label; } } // compute some things related to scope and identifiers for (scope_t *s = comp->scope_head; s != NULL && comp->compile_error == MP_OBJ_NULL; s = s->next) { scope_compute_things(s); } // set max number of labels now that it's calculated emit_bc_set_max_num_labels(emit_bc, max_num_labels); // compile pass 2 and 3 #if MICROPY_EMIT_NATIVE emit_t *emit_native = NULL; #endif for (scope_t *s = comp->scope_head; s != NULL && comp->compile_error == MP_OBJ_NULL; s = s->next) { if (false) { // dummy #if MICROPY_EMIT_INLINE_ASM } else if (s->emit_options == MP_EMIT_OPT_ASM) { // inline assembly if (comp->emit_inline_asm == NULL) { comp->emit_inline_asm = ASM_EMITTER(new)(max_num_labels); } comp->emit = NULL; comp->emit_inline_asm_method_table = &ASM_EMITTER(method_table); compile_scope_inline_asm(comp, s, MP_PASS_CODE_SIZE); #if MICROPY_EMIT_INLINE_XTENSA // Xtensa requires an extra pass to compute size of l32r const table // TODO this can be improved by calculating it during SCOPE pass // but that requires some other structural changes to the asm emitters compile_scope_inline_asm(comp, s, MP_PASS_CODE_SIZE); #endif if (comp->compile_error == MP_OBJ_NULL) { compile_scope_inline_asm(comp, s, MP_PASS_EMIT); } #endif } else { // choose the emit type switch (s->emit_options) { #if MICROPY_EMIT_NATIVE case MP_EMIT_OPT_NATIVE_PYTHON: case MP_EMIT_OPT_VIPER: if (emit_native == NULL) { emit_native = NATIVE_EMITTER(new)(&comp->compile_error, &comp->next_label, max_num_labels); } comp->emit_method_table = &NATIVE_EMITTER(method_table); comp->emit = emit_native; break; #endif // MICROPY_EMIT_NATIVE default: comp->emit = emit_bc; #if MICROPY_EMIT_NATIVE comp->emit_method_table = &emit_bc_method_table; #endif break; } // need a pass to compute stack size compile_scope(comp, s, MP_PASS_STACK_SIZE); // second last pass: compute code size if (comp->compile_error == MP_OBJ_NULL) { compile_scope(comp, s, MP_PASS_CODE_SIZE); } // final pass: emit code if (comp->compile_error == MP_OBJ_NULL) { compile_scope(comp, s, MP_PASS_EMIT); } } } if (comp->compile_error != MP_OBJ_NULL) { // if there is no line number for the error then use the line // number for the start of this scope compile_error_set_line(comp, comp->scope_cur->pn); // add a traceback to the exception using relevant source info mp_obj_exception_add_traceback(comp->compile_error, comp->source_file, comp->compile_error_line, comp->scope_cur->simple_name); } // free the emitters emit_bc_free(emit_bc); #if MICROPY_EMIT_NATIVE if (emit_native != NULL) { NATIVE_EMITTER(free)(emit_native); } #endif #if MICROPY_EMIT_INLINE_ASM if (comp->emit_inline_asm != NULL) { ASM_EMITTER(free)(comp->emit_inline_asm); } #endif // free the parse tree mp_parse_tree_clear(parse_tree); // free the scopes mp_raw_code_t *outer_raw_code = module_scope->raw_code; for (scope_t *s = module_scope; s;) { scope_t *next = s->next; scope_free(s); s = next; } if (comp->compile_error != MP_OBJ_NULL) { nlr_raise(comp->compile_error); } else { return outer_raw_code; } } mp_obj_t mp_compile(mp_parse_tree_t *parse_tree, qstr source_file, uint emit_opt, bool is_repl) { mp_raw_code_t *rc = mp_compile_to_raw_code(parse_tree, source_file, emit_opt, is_repl); // return function that executes the outer module return mp_make_function_from_raw_code(rc, MP_OBJ_NULL, MP_OBJ_NULL); } #endif // MICROPY_ENABLE_COMPILER