/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2017 Scott Shawcroft for Adafruit Industries * Copyright (c) 2019 Lucian Copeland for Adafruit Industries * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include #include "supervisor/board.h" #include "supervisor/port.h" #include "supervisor/filesystem.h" #include "py/runtime.h" #include "freertos/FreeRTOS.h" #include "freertos/task.h" #include "bindings/espidf/__init__.h" #include "common-hal/microcontroller/Pin.h" #include "common-hal/analogio/AnalogOut.h" #include "common-hal/busio/I2C.h" #include "common-hal/busio/SPI.h" #include "common-hal/busio/UART.h" #include "common-hal/dualbank/__init__.h" #include "common-hal/ps2io/Ps2.h" #include "common-hal/pulseio/PulseIn.h" #include "common-hal/pwmio/PWMOut.h" #include "common-hal/watchdog/WatchDogTimer.h" #include "common-hal/socketpool/Socket.h" #include "common-hal/wifi/__init__.h" #include "supervisor/background_callback.h" #include "supervisor/memory.h" #include "supervisor/shared/tick.h" #include "shared-bindings/microcontroller/__init__.h" #include "shared-bindings/microcontroller/RunMode.h" #include "shared-bindings/rtc/__init__.h" #include "shared-bindings/socketpool/__init__.h" #include "shared-module/_environ/__init__.h" #include "peripherals/rmt.h" #include "peripherals/timer.h" #if CIRCUITPY_COUNTIO || CIRCUITPY_ROTARYIO || CIRCUITPY_FREQUENCYIO #include "peripherals/pcnt.h" #endif #if CIRCUITPY_TOUCHIO_USE_NATIVE #include "peripherals/touch.h" #endif #if CIRCUITPY_AUDIOBUSIO #include "common-hal/audiobusio/__init__.h" #endif #if CIRCUITPY_BLEIO #include "shared-bindings/_bleio/__init__.h" #endif #if CIRCUITPY_ESP32_CAMERA #include "esp_camera.h" #endif #ifndef CONFIG_IDF_TARGET_ESP32 #include "soc/cache_memory.h" #endif #include "soc/efuse_reg.h" #include "soc/rtc_cntl_reg.h" #include "esp_debug_helpers.h" #include "bootloader_flash_config.h" #include "esp_efuse.h" #include "esp_ipc.h" #include "esp_rom_efuse.h" #ifdef CONFIG_IDF_TARGET_ESP32 #include "esp32/rom/efuse.h" #endif #include "esp_log.h" #define TAG "port" uint32_t *heap; uint32_t heap_size; STATIC esp_timer_handle_t _tick_timer; STATIC esp_timer_handle_t _sleep_timer; TaskHandle_t circuitpython_task = NULL; extern void esp_restart(void) NORETURN; STATIC void tick_on_cp_core(void *arg) { supervisor_tick(); // CircuitPython's VM is run in a separate FreeRTOS task from timer callbacks. So, we have to // notify the main task every time in case it's waiting for us. xTaskNotifyGive(circuitpython_task); } // This function may happen on the PRO core when CP is on the APP core. So, make // sure we run on the CP core. STATIC void tick_timer_cb(void *arg) { #if defined(CONFIG_FREERTOS_UNICORE) && CONFIG_FREERTOS_UNICORE tick_on_cp_core(arg); #else // This only blocks until the start of the function. That's ok since the PRO // core shouldn't care what we do. esp_ipc_call(CONFIG_ESP_MAIN_TASK_AFFINITY, tick_on_cp_core, NULL); #endif } void sleep_timer_cb(void *arg); // The ESP-IDF determines these pins at runtime so we do too. This code is based on: // https://github.com/espressif/esp-idf/blob/6d85d53ceec30c818a92c2fff8f5437d21c4720f/components/esp_hw_support/port/esp32/spiram_psram.c#L810 // IO-pins for PSRAM. // WARNING: PSRAM shares all but the CS and CLK pins with the flash, so these defines // hardcode the flash pins as well, making this code incompatible with either a setup // that has the flash on non-standard pins or ESP32s with built-in flash. #define PSRAM_SPIQ_SD0_IO 7 #define PSRAM_SPID_SD1_IO 8 #define PSRAM_SPIWP_SD3_IO 10 #define PSRAM_SPIHD_SD2_IO 9 #define FLASH_HSPI_CLK_IO 14 #define FLASH_HSPI_CS_IO 15 #define PSRAM_HSPI_SPIQ_SD0_IO 12 #define PSRAM_HSPI_SPID_SD1_IO 13 #define PSRAM_HSPI_SPIWP_SD3_IO 2 #define PSRAM_HSPI_SPIHD_SD2_IO 4 #ifdef CONFIG_SPIRAM // PSRAM clock and cs IO should be configured based on hardware design. // For ESP32-WROVER or ESP32-WROVER-B module, the clock IO is IO17, the cs IO is IO16, // they are the default value for these two configs. #define D0WD_PSRAM_CLK_IO CONFIG_D0WD_PSRAM_CLK_IO // Default value is 17 #define D0WD_PSRAM_CS_IO CONFIG_D0WD_PSRAM_CS_IO // Default value is 16 #define D2WD_PSRAM_CLK_IO CONFIG_D2WD_PSRAM_CLK_IO // Default value is 9 #define D2WD_PSRAM_CS_IO CONFIG_D2WD_PSRAM_CS_IO // Default value is 10 // There is no reason to change the pin of an embedded psram. // So define the number of pin directly, instead of configurable. #define D0WDR2_V3_PSRAM_CLK_IO 6 #define D0WDR2_V3_PSRAM_CS_IO 16 // For ESP32-PICO chip, the psram share clock with flash. The flash clock pin is fixed, which is IO6. #define PICO_PSRAM_CLK_IO 6 #define PICO_PSRAM_CS_IO CONFIG_PICO_PSRAM_CS_IO // Default value is 10 #define PICO_V3_02_PSRAM_CLK_IO 10 #define PICO_V3_02_PSRAM_CS_IO 9 #endif // CONFIG_SPIRAM static void _never_reset_spi_ram_flash(void) { #if defined(CONFIG_IDF_TARGET_ESP32) #if defined(CONFIG_SPIRAM) uint32_t pkg_ver = esp_efuse_get_pkg_ver(); if (pkg_ver == EFUSE_RD_CHIP_VER_PKG_ESP32D2WDQ5) { never_reset_pin_number(D2WD_PSRAM_CLK_IO); never_reset_pin_number(D2WD_PSRAM_CS_IO); } else if (pkg_ver == EFUSE_RD_CHIP_VER_PKG_ESP32PICOD4 && esp_efuse_get_chip_ver() >= 3) { // This chip is ESP32-PICO-V3 and doesn't have PSRAM. } else if ((pkg_ver == EFUSE_RD_CHIP_VER_PKG_ESP32PICOD2) || (pkg_ver == EFUSE_RD_CHIP_VER_PKG_ESP32PICOD4)) { never_reset_pin_number(PICO_PSRAM_CLK_IO); never_reset_pin_number(PICO_PSRAM_CS_IO); } else if (pkg_ver == EFUSE_RD_CHIP_VER_PKG_ESP32PICOV302) { never_reset_pin_number(PICO_V3_02_PSRAM_CLK_IO); never_reset_pin_number(PICO_V3_02_PSRAM_CS_IO); } else if ((pkg_ver == EFUSE_RD_CHIP_VER_PKG_ESP32D0WDQ6) || (pkg_ver == EFUSE_RD_CHIP_VER_PKG_ESP32D0WDQ5)) { never_reset_pin_number(D0WD_PSRAM_CLK_IO); never_reset_pin_number(D0WD_PSRAM_CS_IO); } else if (pkg_ver == EFUSE_RD_CHIP_VER_PKG_ESP32D0WDR2V3) { never_reset_pin_number(D0WDR2_V3_PSRAM_CLK_IO); never_reset_pin_number(D0WDR2_V3_PSRAM_CS_IO); } #endif // CONFIG_SPIRAM const uint32_t spiconfig = esp_rom_efuse_get_flash_gpio_info(); if (spiconfig == ESP_ROM_EFUSE_FLASH_DEFAULT_SPI) { never_reset_pin_number(SPI_IOMUX_PIN_NUM_CLK); never_reset_pin_number(SPI_IOMUX_PIN_NUM_CS); never_reset_pin_number(PSRAM_SPIQ_SD0_IO); never_reset_pin_number(PSRAM_SPID_SD1_IO); never_reset_pin_number(PSRAM_SPIWP_SD3_IO); never_reset_pin_number(PSRAM_SPIHD_SD2_IO); } else if (spiconfig == ESP_ROM_EFUSE_FLASH_DEFAULT_HSPI) { never_reset_pin_number(FLASH_HSPI_CLK_IO); never_reset_pin_number(FLASH_HSPI_CS_IO); never_reset_pin_number(PSRAM_HSPI_SPIQ_SD0_IO); never_reset_pin_number(PSRAM_HSPI_SPID_SD1_IO); never_reset_pin_number(PSRAM_HSPI_SPIWP_SD3_IO); never_reset_pin_number(PSRAM_HSPI_SPIHD_SD2_IO); } else { never_reset_pin_number(EFUSE_SPICONFIG_RET_SPICLK(spiconfig)); never_reset_pin_number(EFUSE_SPICONFIG_RET_SPICS0(spiconfig)); never_reset_pin_number(EFUSE_SPICONFIG_RET_SPIQ(spiconfig)); never_reset_pin_number(EFUSE_SPICONFIG_RET_SPID(spiconfig)); never_reset_pin_number(EFUSE_SPICONFIG_RET_SPIHD(spiconfig)); never_reset_pin_number(bootloader_flash_get_wp_pin()); } #endif // CONFIG_IDF_TARGET_ESP32 } safe_mode_t port_init(void) { esp_timer_create_args_t args; args.callback = &tick_timer_cb; args.arg = NULL; args.dispatch_method = ESP_TIMER_TASK; args.name = "CircuitPython Tick"; esp_timer_create(&args, &_tick_timer); args.callback = &sleep_timer_cb; args.arg = NULL; args.dispatch_method = ESP_TIMER_TASK; args.name = "CircuitPython Sleep"; esp_timer_create(&args, &_sleep_timer); circuitpython_task = xTaskGetCurrentTaskHandle(); // Send the ROM output out of the UART. This includes early logs. #ifdef DEBUG ets_install_uart_printf(); #endif heap = NULL; #ifndef DEBUG #define DEBUG (0) #endif #define pin_GPIOn(n) pin_GPIO##n #define pin_GPIOn_EXPAND(x) pin_GPIOn(x) #ifdef CONFIG_CONSOLE_UART_TX_GPIO common_hal_never_reset_pin(&pin_GPIOn_EXPAND(CONFIG_CONSOLE_UART_TX_GPIO)); #endif #ifdef CONFIG_CONSOLE_UART_RX_GPIO common_hal_never_reset_pin(&pin_GPIOn_EXPAND(CONFIG_CONSOLE_UART_RX_GPIO)); #endif #if DEBUG // debug UART #ifdef CONFIG_IDF_TARGET_ESP32C3 common_hal_never_reset_pin(&pin_GPIO20); common_hal_never_reset_pin(&pin_GPIO21); #elif defined(CONFIG_IDF_TARGET_ESP32S2) || defined(CONFIG_IDF_TARGET_ESP32S3) common_hal_never_reset_pin(&pin_GPIO43); common_hal_never_reset_pin(&pin_GPIO44); #endif #endif #ifndef ENABLE_JTAG #define ENABLE_JTAG (defined(DEBUG) && DEBUG) #endif #if ENABLE_JTAG // JTAG #ifdef CONFIG_IDF_TARGET_ESP32C3 common_hal_never_reset_pin(&pin_GPIO4); common_hal_never_reset_pin(&pin_GPIO5); common_hal_never_reset_pin(&pin_GPIO6); common_hal_never_reset_pin(&pin_GPIO7); #elif defined(CONFIG_IDF_TARGET_ESP32S2) || defined(CONFIG_IDF_TARGET_ESP32S3) common_hal_never_reset_pin(&pin_GPIO39); common_hal_never_reset_pin(&pin_GPIO40); common_hal_never_reset_pin(&pin_GPIO41); common_hal_never_reset_pin(&pin_GPIO42); #endif #endif #ifdef CONFIG_SPIRAM { intptr_t heap_start = common_hal_espidf_get_psram_start(); intptr_t heap_end = common_hal_espidf_get_psram_end(); size_t spiram_size = heap_end - heap_start; if (spiram_size > 0) { heap = (uint32_t *)heap_start; heap_size = (heap_end - heap_start) / sizeof(uint32_t); } else { ESP_LOGE(TAG, "CONFIG_SPIRAM enabled but no spiram heap available"); } } #endif _never_reset_spi_ram_flash(); if (heap == NULL) { size_t heap_total = heap_caps_get_total_size(MALLOC_CAP_8BIT); heap_size = MIN(heap_caps_get_largest_free_block(MALLOC_CAP_8BIT), heap_total / 2); heap = malloc(heap_size); heap_size = heap_size / sizeof(uint32_t); } if (heap == NULL) { heap_size = 0; return NO_HEAP; } esp_reset_reason_t reason = esp_reset_reason(); switch (reason) { case ESP_RST_BROWNOUT: return BROWNOUT; case ESP_RST_PANIC: return HARD_CRASH; case ESP_RST_INT_WDT: // The interrupt watchdog is used internally to make sure that latency sensitive // interrupt code isn't blocked. User watchdog resets come through ESP_RST_WDT. return WATCHDOG_RESET; case ESP_RST_WDT: default: break; } return NO_SAFE_MODE; } void reset_port(void) { // TODO deinit for esp32-camera #if CIRCUITPY_ESP32_CAMERA esp_camera_deinit(); #endif reset_all_pins(); #if CIRCUITPY_ANALOGIO analogout_reset(); #endif #if CIRCUITPY_AUDIOBUSIO i2s_reset(); #endif #if CIRCUITPY_BUSIO i2c_reset(); spi_reset(); uart_reset(); #endif #if CIRCUITPY_COUNTIO || CIRCUITPY_ROTARYIO || CIRCUITPY_FREQUENCYIO peripherals_pcnt_reset(); #endif #if CIRCUITPY_DUALBANK dualbank_reset(); #endif #if CIRCUITPY_FREQUENCYIO peripherals_timer_reset(); #endif #if CIRCUITPY_PS2IO ps2_reset(); #endif #if CIRCUITPY_PULSEIO peripherals_rmt_reset(); pulsein_reset(); #endif #if CIRCUITPY_PWMIO pwmout_reset(); #endif #if CIRCUITPY_RTC rtc_reset(); #endif #if CIRCUITPY_SOCKETPOOL socketpool_user_reset(); #endif #if CIRCUITPY_TOUCHIO_USE_NATIVE peripherals_touch_reset(); #endif #if CIRCUITPY_WATCHDOG watchdog_reset(); #endif // Yield so the idle task can run and do any IDF cleanup needed. port_yield(); } void reset_to_bootloader(void) { common_hal_mcu_on_next_reset(RUNMODE_BOOTLOADER); esp_restart(); } void reset_cpu(void) { #ifndef CONFIG_IDF_TARGET_ESP32C3 esp_backtrace_print(100); #endif esp_restart(); } uint32_t *port_heap_get_bottom(void) { return heap; } uint32_t *port_heap_get_top(void) { return heap + heap_size; } uint32_t *port_stack_get_limit(void) { #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wcast-align" return (uint32_t *)pxTaskGetStackStart(NULL); #pragma GCC diagnostic pop } uint32_t *port_stack_get_top(void) { // The sizeof-arithmetic is so that the pointer arithmetic is done on units // of uint32_t instead of units of StackType_t. StackType_t is an alias // for a byte sized type. // // The main stack is bigger than CONFIG_ESP_MAIN_TASK_STACK_SIZE -- an // "extra" size is added to it (TASK_EXTRA_STACK_SIZE). This total size is // available as ESP_TASK_MAIN_STACK. Presumably TASK_EXTRA_STACK_SIZE is // additional stack that can be used by the esp-idf runtime. But what's // important for us is that some very outermost stack frames, such as // pyexec_friendly_repl, could lie inside the "extra" area and be invisible // to the garbage collector. return port_stack_get_limit() + ESP_TASK_MAIN_STACK / (sizeof(uint32_t) / sizeof(StackType_t)); } bool port_has_fixed_stack(void) { return true; } // Place the word to save just after our BSS section that gets blanked. void port_set_saved_word(uint32_t value) { REG_WRITE(RTC_CNTL_STORE0_REG, value); } uint32_t port_get_saved_word(void) { return REG_READ(RTC_CNTL_STORE0_REG); } uint64_t port_get_raw_ticks(uint8_t *subticks) { // Convert microseconds to subticks of 1/32768 seconds // 32768/1000000 = 64/15625 in lowest terms // this arithmetic overflows after 570 years int64_t all_subticks = esp_timer_get_time() * 512 / 15625; if (subticks != NULL) { *subticks = all_subticks % 32; } return all_subticks / 32; } // Enable 1/1024 second tick. void port_enable_tick(void) { esp_timer_start_periodic(_tick_timer, 1000000 / 1024); } // Disable 1/1024 second tick. void port_disable_tick(void) { esp_timer_stop(_tick_timer); } void port_wake_main_task() { xTaskNotifyGive(circuitpython_task); } void port_wake_main_task_from_isr() { BaseType_t xHigherPriorityTaskWoken = pdFALSE; vTaskNotifyGiveFromISR(circuitpython_task, &xHigherPriorityTaskWoken); if (xHigherPriorityTaskWoken == pdTRUE) { portYIELD_FROM_ISR(); } } void port_yield() { vTaskDelay(4); } void sleep_timer_cb(void *arg) { port_wake_main_task(); } void port_interrupt_after_ticks(uint32_t ticks) { uint64_t timeout_us = ticks * 1000000ull / 1024; if (esp_timer_start_once(_sleep_timer, timeout_us) != ESP_OK) { esp_timer_stop(_sleep_timer); esp_timer_start_once(_sleep_timer, timeout_us); } } // On the ESP we use FreeRTOS notifications instead of interrupts so this is a // bit of a misnomer. void port_idle_until_interrupt(void) { if (!background_callback_pending()) { xTaskNotifyWait(0x01, 0x01, NULL, portMAX_DELAY); } } void port_post_boot_py(bool heap_valid) { if (!heap_valid && filesystem_present()) { mp_int_t reserved; if (_environ_get_key_int("CIRCUITPY_RESERVED_PSRAM", &reserved) == ENVIRON_OK) { common_hal_espidf_set_reserved_psram(reserved); } common_hal_espidf_reserve_psram(); } } // Wrap main in app_main that the IDF expects. extern void main(void); extern void app_main(void); void app_main(void) { main(); }