/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2017 Scott Shawcroft for Adafruit Industries * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "shared_dma.h" #include "py/gc.h" #include "py/mpstate.h" #include "asf/sam0/drivers/events/events.h" #include "asf/sam0/drivers/system/interrupt/system_interrupt.h" #include "asf/sam0/drivers/tc/tc.h" #undef ENABLE // We allocate two DMA resources for the entire lifecycle of the board (not the // vm) because the general_dma resource will be shared between the REPL and SPI // flash. Both uses must block each other in order to prevent conflict. struct dma_resource audio_dma; struct dma_resource general_dma_tx; struct dma_resource general_dma_rx; void init_shared_dma(void) { struct dma_resource_config config; dma_get_config_defaults(&config); // This allocates the lowest channel first so make sure the audio is first // so it gets the highest priority. config.peripheral_trigger = DAC_DMAC_ID_EMPTY; config.trigger_action = DMA_TRIGGER_ACTION_BEAT; config.event_config.input_action = DMA_EVENT_INPUT_TRIG; config.event_config.event_output_enable = true; dma_allocate(&audio_dma, &config); // Turn on the transfer complete interrupt so that the job_status changes to done. g_chan_interrupt_flag[audio_dma.channel_id] |= (1UL << DMA_CALLBACK_TRANSFER_DONE); // Prioritize the RX channel over the TX channel because TX can cause an RX // overflow. dma_get_config_defaults(&config); config.trigger_action = DMA_TRIGGER_ACTION_BEAT; config.event_config.input_action = DMA_EVENT_INPUT_TRIG; dma_allocate(&general_dma_rx, &config); g_chan_interrupt_flag[general_dma_rx.channel_id] |= (1UL << DMA_CALLBACK_TRANSFER_DONE); dma_get_config_defaults(&config); config.trigger_action = DMA_TRIGGER_ACTION_BEAT; config.event_config.input_action = DMA_EVENT_INPUT_TRIG; dma_allocate(&general_dma_tx, &config); g_chan_interrupt_flag[general_dma_tx.channel_id] |= (1UL << DMA_CALLBACK_TRANSFER_DONE); // Be sneaky and reuse the active descriptor memory. audio_dma.descriptor = &descriptor_section[audio_dma.channel_id]; general_dma_rx.descriptor = &descriptor_section[general_dma_rx.channel_id]; general_dma_tx.descriptor = &descriptor_section[general_dma_tx.channel_id]; } static uint8_t sercom_index(Sercom* sercom) { return ((uint32_t) sercom - (uint32_t) SERCOM0) / 0x400; } static void dma_configure(uint8_t channel, uint8_t trigsrc, bool output_event) { system_interrupt_enter_critical_section(); /** Select the DMA channel and clear software trigger */ DMAC->CHID.reg = DMAC_CHID_ID(channel); DMAC->CHCTRLA.reg &= ~DMAC_CHCTRLA_ENABLE; DMAC->CHCTRLA.reg = DMAC_CHCTRLA_SWRST; DMAC->SWTRIGCTRL.reg &= (uint32_t)(~(1 << channel)); uint32_t event_output_enable = 0; if (output_event) { event_output_enable = DMAC_CHCTRLB_EVOE; } DMAC->CHCTRLB.reg = DMAC_CHCTRLB_LVL(DMA_PRIORITY_LEVEL_0) | DMAC_CHCTRLB_TRIGSRC(trigsrc) | DMAC_CHCTRLB_TRIGACT(DMA_TRIGGER_ACTION_BEAT) | event_output_enable; system_interrupt_leave_critical_section(); } enum status_code shared_dma_write(Sercom* sercom, const uint8_t* buffer, uint32_t length) { if (general_dma_tx.job_status != STATUS_OK) { return general_dma_tx.job_status; } dma_configure(general_dma_tx.channel_id, sercom_index(sercom) * 2 + 2, false); // Set up TX. There is no RX job. struct dma_descriptor_config descriptor_config; dma_descriptor_get_config_defaults(&descriptor_config); descriptor_config.beat_size = DMA_BEAT_SIZE_BYTE; descriptor_config.dst_increment_enable = false; descriptor_config.block_transfer_count = length; descriptor_config.source_address = ((uint32_t)buffer + length); // DATA register is consistently addressed across all SERCOM modes. descriptor_config.destination_address = ((uint32_t)&sercom->SPI.DATA.reg); dma_descriptor_create(general_dma_tx.descriptor, &descriptor_config); enum status_code status = dma_start_transfer_job(&general_dma_tx); if (status != STATUS_OK) { return status; } // Wait for the dma transfer to finish. while (general_dma_tx.job_status == STATUS_BUSY) {} // Wait for the SPI transfer to complete. while (sercom->SPI.INTFLAG.bit.TXC == 0) {} // This transmit will cause the RX buffer overflow but we're OK with that. // So, read the garbage and clear the overflow flag. while (sercom->SPI.INTFLAG.bit.RXC == 1) { sercom->SPI.DATA.reg; } sercom->SPI.STATUS.bit.BUFOVF = 1; sercom->SPI.INTFLAG.reg = SERCOM_SPI_INTFLAG_ERROR; return general_dma_tx.job_status; } enum status_code shared_dma_read(Sercom* sercom, uint8_t* buffer, uint32_t length, uint8_t tx) { return shared_dma_transfer(sercom, NULL, buffer, length, tx); } // Do write and read simultaneously. If buffer_out is NULL, write the tx byte over and over. // If buffer_out is a real buffer, ignore tx. enum status_code shared_dma_transfer(Sercom* sercom, uint8_t* buffer_out, uint8_t* buffer_in, uint32_t length, uint8_t tx) { if (general_dma_tx.job_status != STATUS_OK) { return general_dma_tx.job_status; } dma_configure(general_dma_tx.channel_id, sercom_index(sercom) * 2 + 2, false); dma_configure(general_dma_rx.channel_id, sercom_index(sercom) * 2 + 1, false); // Set up RX first. struct dma_descriptor_config descriptor_config; dma_descriptor_get_config_defaults(&descriptor_config); descriptor_config.beat_size = DMA_BEAT_SIZE_BYTE; descriptor_config.src_increment_enable = false; descriptor_config.dst_increment_enable = true; descriptor_config.block_transfer_count = length; // DATA register is consistently addressed across all SERCOM modes. descriptor_config.source_address = ((uint32_t)&sercom->SPI.DATA.reg); descriptor_config.destination_address = ((uint32_t)buffer_in + length); dma_descriptor_create(general_dma_rx.descriptor, &descriptor_config); // Set up TX second. dma_descriptor_get_config_defaults(&descriptor_config); descriptor_config.beat_size = DMA_BEAT_SIZE_BYTE; // Increment write address only if we have a real buffer. descriptor_config.src_increment_enable = buffer_out != NULL; descriptor_config.dst_increment_enable = false; descriptor_config.block_transfer_count = length; // descriptor_config.source_address = ((uint32_t) (buffer_out != NULL ? buffer_out + length : &tx)); // DATA register is consistently addressed across all SERCOM modes. descriptor_config.destination_address = ((uint32_t)&sercom->SPI.DATA.reg); dma_descriptor_create(general_dma_tx.descriptor, &descriptor_config); // Start the RX job first so we don't miss the first byte. The TX job clocks // the output. general_dma_rx.transfered_size = 0; dma_start_transfer_job(&general_dma_rx); general_dma_tx.transfered_size = 0; dma_start_transfer_job(&general_dma_tx); // Wait for the transfer to finish. while (general_dma_rx.job_status == STATUS_BUSY) {} while (sercom->SPI.INTFLAG.bit.RXC == 1) {} return general_dma_rx.job_status; } bool allocate_block_counter() { // Find a timer to count DMA block completions. Tc *t = NULL; Tc *tcs[TC_INST_NUM] = TC_INSTS; for (uint8_t i = TC_INST_NUM; i > 0; i--) { if (tcs[i - 1]->COUNT16.CTRLA.bit.ENABLE == 0) { t = tcs[i - 1]; break; } } if (t == NULL) { return false; } MP_STATE_VM(audiodma_block_counter) = gc_alloc(sizeof(struct tc_module), false); if (MP_STATE_VM(audiodma_block_counter) == NULL) { return false; } // Don't bother setting the period. We set it before you playback anything. struct tc_config config_tc; tc_get_config_defaults(&config_tc); config_tc.counter_size = TC_COUNTER_SIZE_16BIT; config_tc.clock_prescaler = TC_CLOCK_PRESCALER_DIV1; if (tc_init(MP_STATE_VM(audiodma_block_counter), t, &config_tc) != STATUS_OK) { return false; }; struct tc_events events_tc; events_tc.generate_event_on_overflow = false; events_tc.on_event_perform_action = true; events_tc.event_action = TC_EVENT_ACTION_INCREMENT_COUNTER; tc_enable_events(MP_STATE_VM(audiodma_block_counter), &events_tc); // Connect the timer overflow event, which happens at the target frequency, // to the DAC conversion trigger. MP_STATE_VM(audiodma_block_event) = gc_alloc(sizeof(struct events_resource), false); if (MP_STATE_VM(audiodma_block_event) == NULL) { return false; } struct events_config config; events_get_config_defaults(&config); uint8_t user = EVSYS_ID_USER_TC3_EVU; if (t == TC4) { user = EVSYS_ID_USER_TC4_EVU; } else if (t == TC5) { user = EVSYS_ID_USER_TC5_EVU; #ifdef TC6 } else if (t == TC6) { user = EVSYS_ID_USER_TC6_EVU; #endif #ifdef TC7 } else if (t == TC7) { user = EVSYS_ID_USER_TC7_EVU; #endif } config.generator = EVSYS_ID_GEN_DMAC_CH_0; config.path = EVENTS_PATH_ASYNCHRONOUS; if (events_allocate(MP_STATE_VM(audiodma_block_event), &config) != STATUS_OK || events_attach_user(MP_STATE_VM(audiodma_block_event), user) != STATUS_OK) { return false; } tc_enable(MP_STATE_VM(audiodma_block_counter)); tc_stop_counter(MP_STATE_VM(audiodma_block_counter)); return true; } void switch_audiodma_trigger(uint8_t trigger_dmac_id) { dma_configure(audio_dma.channel_id, trigger_dmac_id, true); }