/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * SPDX-FileCopyrightText: Copyright (c) 2016 Damien P. George * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include #include "py/mpconfig.h" // wrapper around everything in this file #if MICROPY_EMIT_XTENSA || MICROPY_EMIT_INLINE_XTENSA #include "py/asmxtensa.h" #define WORD_SIZE (4) #define SIGNED_FIT8(x) ((((x) & 0xffffff80) == 0) || (((x) & 0xffffff80) == 0xffffff80)) #define SIGNED_FIT12(x) ((((x) & 0xfffff800) == 0) || (((x) & 0xfffff800) == 0xfffff800)) #define NUM_REGS_SAVED (5) void asm_xtensa_end_pass(asm_xtensa_t *as) { as->num_const = as->cur_const; as->cur_const = 0; #if 0 // make a hex dump of the machine code if (as->base.pass == MP_ASM_PASS_EMIT) { uint8_t *d = as->base.code_base; printf("XTENSA ASM:"); for (int i = 0; i < ((as->base.code_size + 15) & ~15); ++i) { if (i % 16 == 0) { printf("\n%08x:", (uint32_t)&d[i]); } if (i % 2 == 0) { printf(" "); } printf("%02x", d[i]); } printf("\n"); } #endif } void asm_xtensa_entry(asm_xtensa_t *as, int num_locals) { // jump over the constants asm_xtensa_op_j(as, as->num_const * WORD_SIZE + 4 - 4); mp_asm_base_get_cur_to_write_bytes(&as->base, 1); // padding/alignment byte as->const_table = (uint32_t *)mp_asm_base_get_cur_to_write_bytes(&as->base, as->num_const * 4); // adjust the stack-pointer to store a0, a12, a13, a14, a15 and locals, 16-byte aligned as->stack_adjust = (((NUM_REGS_SAVED + num_locals) * WORD_SIZE) + 15) & ~15; if (SIGNED_FIT8(-as->stack_adjust)) { asm_xtensa_op_addi(as, ASM_XTENSA_REG_A1, ASM_XTENSA_REG_A1, -as->stack_adjust); } else { asm_xtensa_op_movi(as, ASM_XTENSA_REG_A9, as->stack_adjust); asm_xtensa_op_sub(as, ASM_XTENSA_REG_A1, ASM_XTENSA_REG_A1, ASM_XTENSA_REG_A9); } // save return value (a0) and callee-save registers (a12, a13, a14, a15) asm_xtensa_op_s32i_n(as, ASM_XTENSA_REG_A0, ASM_XTENSA_REG_A1, 0); for (int i = 1; i < NUM_REGS_SAVED; ++i) { asm_xtensa_op_s32i_n(as, ASM_XTENSA_REG_A11 + i, ASM_XTENSA_REG_A1, i); } } void asm_xtensa_exit(asm_xtensa_t *as) { // restore registers for (int i = NUM_REGS_SAVED - 1; i >= 1; --i) { asm_xtensa_op_l32i_n(as, ASM_XTENSA_REG_A11 + i, ASM_XTENSA_REG_A1, i); } asm_xtensa_op_l32i_n(as, ASM_XTENSA_REG_A0, ASM_XTENSA_REG_A1, 0); // restore stack-pointer and return if (SIGNED_FIT8(as->stack_adjust)) { asm_xtensa_op_addi(as, ASM_XTENSA_REG_A1, ASM_XTENSA_REG_A1, as->stack_adjust); } else { asm_xtensa_op_movi(as, ASM_XTENSA_REG_A9, as->stack_adjust); asm_xtensa_op_add_n(as, ASM_XTENSA_REG_A1, ASM_XTENSA_REG_A1, ASM_XTENSA_REG_A9); } asm_xtensa_op_ret_n(as); } STATIC uint32_t get_label_dest(asm_xtensa_t *as, uint label) { assert(label < as->base.max_num_labels); return as->base.label_offsets[label]; } void asm_xtensa_op16(asm_xtensa_t *as, uint16_t op) { uint8_t *c = mp_asm_base_get_cur_to_write_bytes(&as->base, 2); if (c != NULL) { c[0] = op; c[1] = op >> 8; } } void asm_xtensa_op24(asm_xtensa_t *as, uint32_t op) { uint8_t *c = mp_asm_base_get_cur_to_write_bytes(&as->base, 3); if (c != NULL) { c[0] = op; c[1] = op >> 8; c[2] = op >> 16; } } void asm_xtensa_j_label(asm_xtensa_t *as, uint label) { uint32_t dest = get_label_dest(as, label); int32_t rel = dest - as->base.code_offset - 4; // we assume rel, as a signed int, fits in 18-bits asm_xtensa_op_j(as, rel); } void asm_xtensa_bccz_reg_label(asm_xtensa_t *as, uint cond, uint reg, uint label) { uint32_t dest = get_label_dest(as, label); int32_t rel = dest - as->base.code_offset - 4; if (as->base.pass == MP_ASM_PASS_EMIT && !SIGNED_FIT12(rel)) { printf("ERROR: xtensa bccz out of range\n"); } asm_xtensa_op_bccz(as, cond, reg, rel); } void asm_xtensa_bcc_reg_reg_label(asm_xtensa_t *as, uint cond, uint reg1, uint reg2, uint label) { uint32_t dest = get_label_dest(as, label); int32_t rel = dest - as->base.code_offset - 4; if (as->base.pass == MP_ASM_PASS_EMIT && !SIGNED_FIT8(rel)) { printf("ERROR: xtensa bcc out of range\n"); } asm_xtensa_op_bcc(as, cond, reg1, reg2, rel); } // convenience function; reg_dest must be different from reg_src[12] void asm_xtensa_setcc_reg_reg_reg(asm_xtensa_t *as, uint cond, uint reg_dest, uint reg_src1, uint reg_src2) { asm_xtensa_op_movi_n(as, reg_dest, 1); asm_xtensa_op_bcc(as, cond, reg_src1, reg_src2, 1); asm_xtensa_op_movi_n(as, reg_dest, 0); } size_t asm_xtensa_mov_reg_i32(asm_xtensa_t *as, uint reg_dest, uint32_t i32) { // load the constant uint32_t const_table_offset = (uint8_t *)as->const_table - as->base.code_base; size_t loc = const_table_offset + as->cur_const * WORD_SIZE; asm_xtensa_op_l32r(as, reg_dest, as->base.code_offset, loc); // store the constant in the table if (as->const_table != NULL) { as->const_table[as->cur_const] = i32; } ++as->cur_const; return loc; } void asm_xtensa_mov_reg_i32_optimised(asm_xtensa_t *as, uint reg_dest, uint32_t i32) { if (SIGNED_FIT12(i32)) { asm_xtensa_op_movi(as, reg_dest, i32); } else { asm_xtensa_mov_reg_i32(as, reg_dest, i32); } } void asm_xtensa_mov_local_reg(asm_xtensa_t *as, int local_num, uint reg_src) { asm_xtensa_op_s32i(as, reg_src, ASM_XTENSA_REG_A1, NUM_REGS_SAVED + local_num); } void asm_xtensa_mov_reg_local(asm_xtensa_t *as, uint reg_dest, int local_num) { asm_xtensa_op_l32i(as, reg_dest, ASM_XTENSA_REG_A1, NUM_REGS_SAVED + local_num); } void asm_xtensa_mov_reg_local_addr(asm_xtensa_t *as, uint reg_dest, int local_num) { uint off = (NUM_REGS_SAVED + local_num) * WORD_SIZE; if (SIGNED_FIT8(off)) { asm_xtensa_op_addi(as, reg_dest, ASM_XTENSA_REG_A1, off); } else { asm_xtensa_op_movi(as, reg_dest, off); asm_xtensa_op_add_n(as, reg_dest, reg_dest, ASM_XTENSA_REG_A1); } } void asm_xtensa_mov_reg_pcrel(asm_xtensa_t *as, uint reg_dest, uint label) { // Get relative offset from PC uint32_t dest = get_label_dest(as, label); int32_t rel = dest - as->base.code_offset; rel -= 3 + 3; // account for 3 bytes of movi instruction, 3 bytes call0 adjustment asm_xtensa_op_movi(as, reg_dest, rel); // imm has 12-bit range // Use call0 to get PC+3 into a0 // call0 destination must be aligned on 4 bytes: // - code_offset&3=0: off=0, pad=1 // - code_offset&3=1: off=0, pad=0 // - code_offset&3=2: off=1, pad=3 // - code_offset&3=3: off=1, pad=2 uint32_t off = as->base.code_offset >> 1 & 1; uint32_t pad = (5 - as->base.code_offset) & 3; asm_xtensa_op_call0(as, off); mp_asm_base_get_cur_to_write_bytes(&as->base, pad); // Add PC to relative offset asm_xtensa_op_add_n(as, reg_dest, reg_dest, ASM_XTENSA_REG_A0); } void asm_xtensa_call_ind(asm_xtensa_t *as, uint idx) { if (idx < 16) { asm_xtensa_op_l32i_n(as, ASM_XTENSA_REG_A0, ASM_XTENSA_REG_FUN_TABLE, idx); } else { asm_xtensa_op_l32i(as, ASM_XTENSA_REG_A0, ASM_XTENSA_REG_FUN_TABLE, idx); } asm_xtensa_op_callx0(as, ASM_XTENSA_REG_A0); } #endif // MICROPY_EMIT_XTENSA || MICROPY_EMIT_INLINE_XTENSA