/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2017 Linaro Limited * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "py/mpconfig.h" #ifdef MICROPY_PY_USOCKET #include "py/runtime.h" #include #include // Zephyr's generated version header #include #include #include #if 0 // print debugging info #define DEBUG_printf printf #else // don't print debugging info #define DEBUG_printf(...) (void)0 #endif typedef struct _socket_obj_t { mp_obj_base_t base; struct net_context *ctx; struct k_fifo recv_q; struct net_buf *cur_buf; #define STATE_NEW 0 #define STATE_CONNECTING 1 #define STATE_CONNECTED 2 #define STATE_PEER_CLOSED 3 int8_t state; } socket_obj_t; STATIC const mp_obj_type_t socket_type; // k_fifo extended API static inline void *_k_fifo_peek_head(struct k_fifo *fifo) { #if KERNEL_VERSION_NUMBER < 0x010763 /* 1.7.99 */ return sys_slist_peek_head(&fifo->data_q); #else return sys_slist_peek_head(&fifo->_queue.data_q); #endif } static inline void *_k_fifo_peek_tail(struct k_fifo *fifo) { #if KERNEL_VERSION_NUMBER < 0x010763 /* 1.7.99 */ return sys_slist_peek_tail(&fifo->data_q); #else return sys_slist_peek_tail(&fifo->_queue.data_q); #endif } static inline void _k_fifo_wait_non_empty(struct k_fifo *fifo, int32_t timeout) { struct k_poll_event events[] = { K_POLL_EVENT_INITIALIZER(K_POLL_TYPE_FIFO_DATA_AVAILABLE, K_POLL_MODE_NOTIFY_ONLY, fifo), }; k_poll(events, MP_ARRAY_SIZE(events), timeout); DEBUG_printf("poll res: %d\n", events[0].state); } // Helper functions #define RAISE_ERRNO(x) { int _err = x; if (_err < 0) mp_raise_OSError(-_err); } STATIC void socket_check_closed(socket_obj_t *socket) { if (socket->ctx == NULL) { // already closed mp_raise_OSError(EBADF); } } STATIC void parse_inet_addr(socket_obj_t *socket, mp_obj_t addr_in, struct sockaddr *sockaddr) { // We employ the fact that port and address offsets are the same for IPv4 & IPv6 struct sockaddr_in *sockaddr_in = (struct sockaddr_in*)sockaddr; mp_obj_t *addr_items; mp_obj_get_array_fixed_n(addr_in, 2, &addr_items); sockaddr_in->sin_family = net_context_get_family(socket->ctx); RAISE_ERRNO(net_addr_pton(sockaddr_in->sin_family, mp_obj_str_get_str(addr_items[0]), &sockaddr_in->sin_addr)); sockaddr_in->sin_port = htons(mp_obj_get_int(addr_items[1])); } // Copy data from Zephyr net_buf chain into linear buffer. // We don't use net_nbuf_read(), because it's weird (e.g., we'd like to // free processed data fragment ASAP, while net_nbuf_read() holds onto // the whole fragment chain to do its deeds, and that's minor comparing // to the fact that it copies data byte by byte). static char *net_buf_gather(struct net_buf *buf, char *to, unsigned max_len) { struct net_buf *tmp = buf->frags; unsigned header_len = net_nbuf_appdata(buf) - tmp->data; net_buf_pull(tmp, header_len); while (tmp && max_len) { unsigned len = tmp->len; if (len > max_len) { len = max_len; } memcpy(to, tmp->data, len); to += len; max_len -= len; tmp = net_buf_frag_del(buf, tmp); } return to; } // Callback for incoming packets. static void sock_received_cb(struct net_context *context, struct net_buf *net_buf, int status, void *user_data) { socket_obj_t *socket = (socket_obj_t*)user_data; DEBUG_printf("recv cb: context: %p, status: %d, buf: %p", context, status, net_buf); if (net_buf) { DEBUG_printf(" (sz=%d, l=%d), token: %p", net_buf->size, net_buf->len, net_nbuf_token(net_buf)); } DEBUG_printf("\n"); // if net_buf == NULL, EOF if (net_buf == NULL) { struct net_buf *last_buf = _k_fifo_peek_tail(&socket->recv_q); if (last_buf == NULL) { socket->state = STATE_PEER_CLOSED; DEBUG_printf("Marked socket %p as peer-closed\n", socket); } else { // We abuse "buf_sent" flag to store EOF flag net_nbuf_set_buf_sent(last_buf, true); DEBUG_printf("Set EOF flag on %p\n", last_buf); } return; } // Make sure that "EOF flag" is not set net_nbuf_set_buf_sent(net_buf, false); // net_buf->frags will be overwritten by fifo, so save it net_nbuf_set_token(net_buf, net_buf->frags); k_fifo_put(&socket->recv_q, net_buf); } socket_obj_t *socket_new(void) { socket_obj_t *socket = m_new_obj_with_finaliser(socket_obj_t); socket->base.type = (mp_obj_t)&socket_type; k_fifo_init(&socket->recv_q); socket->cur_buf = NULL; socket->state = STATE_NEW; return socket; } // Methods STATIC void socket_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) { socket_obj_t *self = self_in; if (self->ctx == NULL) { mp_printf(print, ""); } else { struct net_context *ctx = self->ctx; mp_printf(print, "", ctx, net_context_get_type(ctx)); } } STATIC mp_obj_t socket_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) { mp_arg_check_num(n_args, n_kw, 0, 4, false); socket_obj_t *socket = socket_new(); int family = AF_INET; int socktype = SOCK_STREAM; int proto = -1; if (n_args >= 1) { family = mp_obj_get_int(args[0]); if (n_args >= 2) { socktype = mp_obj_get_int(args[1]); if (n_args >= 3) { proto = mp_obj_get_int(args[2]); } } } if (proto == -1) { proto = IPPROTO_TCP; if (socktype != SOCK_STREAM) { proto = IPPROTO_UDP; } } RAISE_ERRNO(net_context_get(family, socktype, proto, &socket->ctx)); return MP_OBJ_FROM_PTR(socket); } STATIC mp_obj_t socket_bind(mp_obj_t self_in, mp_obj_t addr_in) { socket_obj_t *socket = self_in; socket_check_closed(socket); struct sockaddr sockaddr; parse_inet_addr(socket, addr_in, &sockaddr); RAISE_ERRNO(net_context_bind(socket->ctx, &sockaddr, sizeof(sockaddr))); DEBUG_printf("Setting recv cb after bind\n"); RAISE_ERRNO(net_context_recv(socket->ctx, sock_received_cb, K_NO_WAIT, socket)); return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_2(socket_bind_obj, socket_bind); STATIC mp_obj_t socket_connect(mp_obj_t self_in, mp_obj_t addr_in) { socket_obj_t *socket = self_in; socket_check_closed(socket); struct sockaddr sockaddr; parse_inet_addr(socket, addr_in, &sockaddr); RAISE_ERRNO(net_context_connect(socket->ctx, &sockaddr, sizeof(sockaddr), NULL, K_FOREVER, NULL)); DEBUG_printf("Setting recv cb after connect()\n"); RAISE_ERRNO(net_context_recv(socket->ctx, sock_received_cb, K_NO_WAIT, socket)); return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_2(socket_connect_obj, socket_connect); STATIC mp_obj_t socket_send(mp_obj_t self_in, mp_obj_t buf_in) { socket_obj_t *socket = self_in; socket_check_closed(socket); mp_buffer_info_t bufinfo; mp_get_buffer_raise(buf_in, &bufinfo, MP_BUFFER_READ); struct net_buf *send_buf = net_nbuf_get_tx(socket->ctx, K_FOREVER); // TODO: Probably should limit how much data we send in one call still if (!net_nbuf_append(send_buf, bufinfo.len, bufinfo.buf, K_FOREVER)) { mp_raise_OSError(ENOSPC); } RAISE_ERRNO(net_context_send(send_buf, /*cb*/NULL, K_FOREVER, NULL, NULL)); return mp_obj_new_int_from_uint(bufinfo.len); } STATIC MP_DEFINE_CONST_FUN_OBJ_2(socket_send_obj, socket_send); STATIC mp_obj_t socket_recv(mp_obj_t self_in, mp_obj_t len_in) { socket_obj_t *socket = self_in; socket_check_closed(socket); enum net_sock_type sock_type = net_context_get_type(socket->ctx); mp_int_t max_len = mp_obj_get_int(len_in); unsigned recv_len; vstr_t vstr; if (sock_type == SOCK_DGRAM) { struct net_buf *net_buf = k_fifo_get(&socket->recv_q, K_FOREVER); // Restore ->frags overwritten by fifo net_buf->frags = net_nbuf_token(net_buf); recv_len = net_nbuf_appdatalen(net_buf); DEBUG_printf("recv: net_buf=%p, appdatalen: %d\n", net_buf, recv_len); if (recv_len > max_len) { recv_len = max_len; } vstr_init_len(&vstr, recv_len); net_buf_gather(net_buf, vstr.buf, recv_len); net_nbuf_unref(net_buf); } else if (sock_type == SOCK_STREAM) { do { if (socket->state == STATE_PEER_CLOSED) { return mp_const_empty_bytes; } unsigned header_len = 0; if (socket->cur_buf == NULL) { DEBUG_printf("TCP recv: no cur_buf, getting\n"); struct net_buf *net_buf = k_fifo_get(&socket->recv_q, K_FOREVER); // Restore ->frags overwritten by fifo net_buf->frags = net_nbuf_token(net_buf); header_len = net_nbuf_appdata(net_buf) - net_buf->frags->data; DEBUG_printf("TCP recv: new cur_buf: %p, hdr_len: %u\n", net_buf, header_len); socket->cur_buf = net_buf; } struct net_buf *frag = socket->cur_buf->frags; if (frag == NULL) { printf("net_buf has empty fragments on start!\n"); assert(0); } net_buf_pull(frag, header_len); unsigned frag_len = frag->len; recv_len = frag_len; if (recv_len > max_len) { recv_len = max_len; } DEBUG_printf("%d data bytes in head frag, going to read %d\n", frag_len, recv_len); vstr_init_len(&vstr, recv_len); memcpy(vstr.buf, frag->data, recv_len); if (recv_len != frag_len) { net_buf_pull(frag, recv_len); } else { frag = net_buf_frag_del(socket->cur_buf, frag); if (frag == NULL) { DEBUG_printf("Finished processing net_buf %p\n", socket->cur_buf); // If "buf_sent" flag was set, it's last packet and we reached EOF if (net_nbuf_buf_sent(socket->cur_buf)) { socket->state = STATE_PEER_CLOSED; } net_nbuf_unref(socket->cur_buf); socket->cur_buf = NULL; } } // Keep repeating while we're getting empty fragments // Zephyr IP stack appears to feed empty net_buf's with empty // frags for various TCP control packets. } while (recv_len == 0); } else { mp_not_implemented(""); } mp_obj_t ret = mp_obj_new_str_from_vstr(&mp_type_bytes, &vstr); return ret; } STATIC MP_DEFINE_CONST_FUN_OBJ_2(socket_recv_obj, socket_recv); STATIC mp_obj_t socket_close(mp_obj_t self_in) { socket_obj_t *socket = self_in; if (socket->ctx != NULL) { RAISE_ERRNO(net_context_put(socket->ctx)); socket->ctx = NULL; } return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_1(socket_close_obj, socket_close); STATIC const mp_map_elem_t socket_locals_dict_table[] = { { MP_OBJ_NEW_QSTR(MP_QSTR___del__), (mp_obj_t)&socket_close_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_close), (mp_obj_t)&socket_close_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_bind), (mp_obj_t)&socket_bind_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_connect), (mp_obj_t)&socket_connect_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_send), (mp_obj_t)&socket_send_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_recv), (mp_obj_t)&socket_recv_obj }, }; STATIC MP_DEFINE_CONST_DICT(socket_locals_dict, socket_locals_dict_table); STATIC const mp_obj_type_t socket_type = { { &mp_type_type }, .name = MP_QSTR_socket, .print = socket_print, .make_new = socket_make_new, //.protocol = &socket_stream_p, .locals_dict = (mp_obj_t)&socket_locals_dict, }; STATIC const mp_map_elem_t mp_module_usocket_globals_table[] = { { MP_OBJ_NEW_QSTR(MP_QSTR___name__), MP_OBJ_NEW_QSTR(MP_QSTR_usocket) }, // objects { MP_OBJ_NEW_QSTR(MP_QSTR_socket), (mp_obj_t)&socket_type }, // class constants { MP_OBJ_NEW_QSTR(MP_QSTR_AF_INET), MP_OBJ_NEW_SMALL_INT(AF_INET) }, { MP_OBJ_NEW_QSTR(MP_QSTR_AF_INET6), MP_OBJ_NEW_SMALL_INT(AF_INET6) }, { MP_OBJ_NEW_QSTR(MP_QSTR_SOCK_STREAM), MP_OBJ_NEW_SMALL_INT(SOCK_STREAM) }, { MP_OBJ_NEW_QSTR(MP_QSTR_SOCK_DGRAM), MP_OBJ_NEW_SMALL_INT(SOCK_DGRAM) }, }; STATIC MP_DEFINE_CONST_DICT(mp_module_usocket_globals, mp_module_usocket_globals_table); const mp_obj_module_t mp_module_usocket = { .base = { &mp_type_module }, .globals = (mp_obj_dict_t*)&mp_module_usocket_globals, }; #endif // MICROPY_PY_USOCKET