/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2018 Ha Thach for Adafruit Industries * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "shared-bindings/microcontroller/__init__.h" #include "shared-bindings/busio/UART.h" #include "lib/utils/interrupt_char.h" #include "py/mpconfig.h" #include "py/gc.h" #include "py/mperrno.h" #include "py/runtime.h" #include "py/stream.h" #include "supervisor/shared/translate.h" #include "nrfx_uarte.h" #include "nrf_gpio.h" #include // expression to examine, and return value in case of failing #define _VERIFY_ERR(_exp) \ do { \ uint32_t _err = (_exp); \ if (NRFX_SUCCESS != _err) { \ mp_raise_msg_varg(&mp_type_RuntimeError, translate("error = 0x%08lX"), _err); \ } \ } while (0) static nrfx_uarte_t nrfx_uartes[] = { #if NRFX_CHECK(NRFX_UARTE0_ENABLED) NRFX_UARTE_INSTANCE(0), #endif #if NRFX_CHECK(NRFX_UARTE1_ENABLED) NRFX_UARTE_INSTANCE(1), #endif }; static bool never_reset[NRFX_UARTE0_ENABLED + NRFX_UARTE1_ENABLED]; static uint32_t get_nrf_baud(uint32_t baudrate) { static const struct { const uint32_t boundary; nrf_uarte_baudrate_t uarte_baudraute; } baudrate_map[] = { { 1200, NRF_UARTE_BAUDRATE_1200 }, { 2400, NRF_UARTE_BAUDRATE_2400 }, { 4800, NRF_UARTE_BAUDRATE_4800 }, { 9600, NRF_UARTE_BAUDRATE_9600 }, { 14400, NRF_UARTE_BAUDRATE_14400 }, { 19200, NRF_UARTE_BAUDRATE_19200 }, { 28800, NRF_UARTE_BAUDRATE_28800 }, { 31250, NRF_UARTE_BAUDRATE_31250 }, { 38400, NRF_UARTE_BAUDRATE_38400 }, { 56000, NRF_UARTE_BAUDRATE_56000 }, { 57600, NRF_UARTE_BAUDRATE_57600 }, { 76800, NRF_UARTE_BAUDRATE_76800 }, { 115200, NRF_UARTE_BAUDRATE_115200 }, { 230400, NRF_UARTE_BAUDRATE_230400 }, { 250000, NRF_UARTE_BAUDRATE_250000 }, { 460800, NRF_UARTE_BAUDRATE_460800 }, { 921600, NRF_UARTE_BAUDRATE_921600 }, { 0, NRF_UARTE_BAUDRATE_1000000 }, }; size_t i = 0; uint32_t boundary; do { boundary = baudrate_map[i].boundary; if (baudrate <= boundary || boundary == 0) { return baudrate_map[i].uarte_baudraute; } i++; } while (true); } static void uart_callback_irq(const nrfx_uarte_event_t *event, void *context) { busio_uart_obj_t *self = (busio_uart_obj_t *)context; switch (event->type) { case NRFX_UARTE_EVT_RX_DONE: if (ringbuf_num_empty(&self->ringbuf) >= event->data.rxtx.bytes) { ringbuf_put_n(&self->ringbuf, event->data.rxtx.p_data, event->data.rxtx.bytes); // keep receiving (void)nrfx_uarte_rx(self->uarte, &self->rx_char, 1); } else { // receive buffer full, suspend self->rx_paused = true; nrf_gpio_pin_write(self->rts_pin_number, true); } break; case NRFX_UARTE_EVT_TX_DONE: // nothing to do break; case NRFX_UARTE_EVT_ERROR: // Possible Error source is Overrun, Parity, Framing, Break // uint32_t errsrc = event->data.error.error_mask; ringbuf_put_n(&self->ringbuf, event->data.error.rxtx.p_data, event->data.error.rxtx.bytes); // Keep receiving (void)nrfx_uarte_rx(self->uarte, &self->rx_char, 1); break; default: break; } } void uart_reset(void) { for (size_t i = 0; i < MP_ARRAY_SIZE(nrfx_uartes); i++) { if (never_reset[i]) { continue; } nrfx_uarte_uninit(&nrfx_uartes[i]); } } void common_hal_busio_uart_never_reset(busio_uart_obj_t *self) { // Don't never reset objects on the heap. if (gc_alloc_possible() && gc_nbytes(self) > 0) { return; } for (size_t i = 0; i < MP_ARRAY_SIZE(nrfx_uartes); i++) { if (self->uarte == &nrfx_uartes[i]) { never_reset[i] = true; break; } } never_reset_pin_number(self->tx_pin_number); never_reset_pin_number(self->rx_pin_number); } void common_hal_busio_uart_construct(busio_uart_obj_t *self, const mcu_pin_obj_t *tx, const mcu_pin_obj_t *rx, const mcu_pin_obj_t *rts, const mcu_pin_obj_t *cts, const mcu_pin_obj_t *rs485_dir, bool rs485_invert, uint32_t baudrate, uint8_t bits, busio_uart_parity_t parity, uint8_t stop, mp_float_t timeout, uint16_t receiver_buffer_size, byte *receiver_buffer, bool sigint_enabled) { if (bits != 8) { mp_raise_ValueError(translate("Invalid word/bit length")); } if ((rs485_dir != NULL) || (rs485_invert)) { mp_raise_ValueError(translate("RS485 Not yet supported on this device")); } // Find a free UART peripheral. self->uarte = NULL; for (size_t i = 0; i < MP_ARRAY_SIZE(nrfx_uartes); i++) { if ((nrfx_uartes[i].p_reg->ENABLE & UARTE_ENABLE_ENABLE_Msk) == 0) { self->uarte = &nrfx_uartes[i]; break; } } if (self->uarte == NULL) { mp_raise_ValueError(translate("All UART peripherals are in use")); } if ((tx == NULL) && (rx == NULL)) { mp_raise_ValueError(translate("tx and rx cannot both be None")); } if (receiver_buffer_size == 0) { mp_raise_ValueError(translate("Invalid buffer size")); } if (parity == BUSIO_UART_PARITY_ODD) { mp_raise_ValueError(translate("Odd parity is not supported")); } bool hwfc = rts != NULL || cts != NULL; nrfx_uarte_config_t config = { .pseltxd = (tx == NULL) ? NRF_UARTE_PSEL_DISCONNECTED : tx->number, .pselrxd = (rx == NULL) ? NRF_UARTE_PSEL_DISCONNECTED : rx->number, .pselcts = (cts == NULL) ? NRF_UARTE_PSEL_DISCONNECTED : cts->number, .pselrts = (rts == NULL) ? NRF_UARTE_PSEL_DISCONNECTED : rts->number, .p_context = self, .baudrate = get_nrf_baud(baudrate), .interrupt_priority = NRFX_UARTE_DEFAULT_CONFIG_IRQ_PRIORITY, .hal_cfg = { .hwfc = hwfc ? NRF_UARTE_HWFC_ENABLED : NRF_UARTE_HWFC_DISABLED, .parity = (parity == BUSIO_UART_PARITY_NONE) ? NRF_UARTE_PARITY_EXCLUDED : NRF_UARTE_PARITY_INCLUDED } }; _VERIFY_ERR(nrfx_uarte_init(self->uarte, &config, uart_callback_irq)); // Init buffer for rx if (rx != NULL) { self->allocated_ringbuf = true; // Use the provided buffer when given. if (receiver_buffer != NULL) { self->ringbuf.buf = receiver_buffer; self->ringbuf.size = receiver_buffer_size - 1; self->ringbuf.iput = 0; self->ringbuf.iget = 0; self->allocated_ringbuf = false; // Initially allocate the UART's buffer in the long-lived part of the // heap. UARTs are generally long-lived objects, but the "make long- // lived" machinery is incapable of moving internal pointers like // self->buffer, so do it manually. (However, as long as internal // pointers like this are NOT moved, allocating the buffer // in the long-lived pool is not strictly necessary) // (This is a macro.) } else if (!ringbuf_alloc(&self->ringbuf, receiver_buffer_size, true)) { nrfx_uarte_uninit(self->uarte); mp_raise_msg(&mp_type_MemoryError, translate("Failed to allocate RX buffer")); } self->rx_pin_number = rx->number; claim_pin(rx); } if (tx != NULL) { self->tx_pin_number = tx->number; claim_pin(tx); } else { self->tx_pin_number = NO_PIN; } if (rts != NULL) { self->rts_pin_number = rts->number; claim_pin(rts); } else { self->rts_pin_number = NO_PIN; } if (cts != NULL) { self->cts_pin_number = cts->number; claim_pin(cts); } else { self->cts_pin_number = NO_PIN; } self->baudrate = baudrate; self->timeout_ms = timeout * 1000; self->rx_paused = false; // Initial wait for incoming byte _VERIFY_ERR(nrfx_uarte_rx(self->uarte, &self->rx_char, 1)); } bool common_hal_busio_uart_deinited(busio_uart_obj_t *self) { return self->rx_pin_number == NO_PIN; } void common_hal_busio_uart_deinit(busio_uart_obj_t *self) { if (!common_hal_busio_uart_deinited(self)) { nrfx_uarte_uninit(self->uarte); reset_pin_number(self->tx_pin_number); reset_pin_number(self->rx_pin_number); reset_pin_number(self->rts_pin_number); reset_pin_number(self->cts_pin_number); self->tx_pin_number = NO_PIN; self->rx_pin_number = NO_PIN; self->rts_pin_number = NO_PIN; self->cts_pin_number = NO_PIN; if (self->allocated_ringbuf) { ringbuf_free(&self->ringbuf); } for (size_t i = 0; i < MP_ARRAY_SIZE(nrfx_uartes); i++) { if (self->uarte == &nrfx_uartes[i]) { never_reset[i] = false; break; } } } } // Read characters. size_t common_hal_busio_uart_read(busio_uart_obj_t *self, uint8_t *data, size_t len, int *errcode) { if (nrf_uarte_rx_pin_get(self->uarte->p_reg) == NRF_UARTE_PSEL_DISCONNECTED) { mp_raise_ValueError(translate("No RX pin")); } uint64_t start_ticks = supervisor_ticks_ms64(); // check removed to reduce code size /* if (len > ringbuf_capacity(&self->ringbuf)) { mp_raise_ValueError(translate("Reading >receiver_buffer_size bytes is not supported")); } */ // Wait for all bytes received or timeout while ((ringbuf_num_filled(&self->ringbuf) < len) && (supervisor_ticks_ms64() - start_ticks < self->timeout_ms)) { RUN_BACKGROUND_TASKS; // Allow user to break out of a timeout with a KeyboardInterrupt. if (mp_hal_is_interrupted()) { return 0; } } // prevent conflict with uart irq NVIC_DisableIRQ(nrfx_get_irq_number(self->uarte->p_reg)); // Copy as much received data as available, up to len bytes. size_t rx_bytes = ringbuf_get_n(&self->ringbuf, data, len); // restart reader, if stopped if (self->rx_paused) { // the character that did not fit in ringbuf is in rx_char ringbuf_put_n(&self->ringbuf, &self->rx_char, 1); // keep receiving (void)nrfx_uarte_rx(self->uarte, &self->rx_char, 1); nrf_gpio_pin_write(self->rts_pin_number, false); self->rx_paused = false; } NVIC_EnableIRQ(nrfx_get_irq_number(self->uarte->p_reg)); return rx_bytes; } // Write characters. size_t common_hal_busio_uart_write(busio_uart_obj_t *self, const uint8_t *data, size_t len, int *errcode) { if (nrf_uarte_tx_pin_get(self->uarte->p_reg) == NRF_UARTE_PSEL_DISCONNECTED) { mp_raise_ValueError(translate("No TX pin")); } if (len == 0) { return 0; } // EasyDMA can only access SRAM uint8_t *tx_buf = (uint8_t *)data; if (!nrfx_is_in_ram(data)) { // Allocate long strings on the heap. if (len > 128 && gc_alloc_possible()) { tx_buf = (uint8_t *)gc_alloc(len, false, false); } else { tx_buf = alloca(len); } memcpy(tx_buf, data, len); } // There is a small chance we're called recursively during debugging. In that case, // a UART write might already be in progress so wait for it to complete. while (nrfx_uarte_tx_in_progress(self->uarte)) { RUN_BACKGROUND_TASKS; } (*errcode) = nrfx_uarte_tx(self->uarte, tx_buf, len); _VERIFY_ERR(*errcode); (*errcode) = 0; // Wait for write to complete. while (nrfx_uarte_tx_in_progress(self->uarte)) { RUN_BACKGROUND_TASKS; } if (!nrfx_is_in_ram(data) && gc_alloc_possible() && gc_nbytes(tx_buf) > 0) { gc_free(tx_buf); } return len; } uint32_t common_hal_busio_uart_get_baudrate(busio_uart_obj_t *self) { return self->baudrate; } void common_hal_busio_uart_set_baudrate(busio_uart_obj_t *self, uint32_t baudrate) { self->baudrate = baudrate; nrf_uarte_baudrate_set(self->uarte->p_reg, get_nrf_baud(baudrate)); } mp_float_t common_hal_busio_uart_get_timeout(busio_uart_obj_t *self) { return (mp_float_t)(self->timeout_ms / 1000.0f); } void common_hal_busio_uart_set_timeout(busio_uart_obj_t *self, mp_float_t timeout) { self->timeout_ms = timeout * 1000; } uint32_t common_hal_busio_uart_rx_characters_available(busio_uart_obj_t *self) { return ringbuf_num_filled(&self->ringbuf); } void common_hal_busio_uart_clear_rx_buffer(busio_uart_obj_t *self) { // prevent conflict with uart irq NVIC_DisableIRQ(nrfx_get_irq_number(self->uarte->p_reg)); ringbuf_clear(&self->ringbuf); NVIC_EnableIRQ(nrfx_get_irq_number(self->uarte->p_reg)); } bool common_hal_busio_uart_ready_to_tx(busio_uart_obj_t *self) { return !nrfx_uarte_tx_in_progress(self->uarte); }