/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2013, 2014 Damien P. George * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ // Essentially normal Python has 1 type: Python objects // Viper has more than 1 type, and is just a more complicated (a superset of) Python. // If you declare everything in Viper as a Python object (ie omit type decls) then // it should in principle be exactly the same as Python native. // Having types means having more opcodes, like binary_op_nat_nat, binary_op_nat_obj etc. // In practice we won't have a VM but rather do this in asm which is actually very minimal. // Because it breaks strict Python equivalence it should be a completely separate // decorator. It breaks equivalence because overflow on integers wraps around. // It shouldn't break equivalence if you don't use the new types, but since the // type decls might be used in normal Python for other reasons, it's probably safest, // cleanest and clearest to make it a separate decorator. // Actually, it does break equivalence because integers default to native integers, // not Python objects. // for x in l[0:8]: can be compiled into a native loop if l has pointer type #include #include #include #include "py/emit.h" #include "py/nativeglue.h" #include "py/objfun.h" #include "py/objstr.h" #if MICROPY_DEBUG_VERBOSE // print debugging info #define DEBUG_PRINT (1) #define DEBUG_printf DEBUG_printf #else // don't print debugging info #define DEBUG_printf(...) (void)0 #endif // CIRCUITPY-CHANGE: force definitions #ifndef N_X64 #define N_X64 (0) #endif #ifndef N_X86 #define N_X86 (0) #endif #ifndef N_THUMB #define N_THUMB (0) #endif #ifndef N_ARM #define N_ARM (0) #endif #ifndef N_XTENSA #define N_XTENSA (0) #endif #ifndef N_NLR_SETJMP #define N_NLR_SETJMP (0) #endif #ifndef N_PRELUDE_AS_BYTES_OBJ #define N_PRELUDE_AS_BYTES_OBJ (0) #endif // wrapper around everything in this file #if N_X64 || N_X86 || N_THUMB || N_ARM || N_XTENSA || N_XTENSAWIN // C stack layout for native functions: // 0: nlr_buf_t [optional] // return_value [optional word] // exc_handler_unwind [optional word] // emit->code_state_start: mp_code_state_native_t // emit->stack_start: Python object stack | emit->n_state // locals (reversed, L0 at end) | // // C stack layout for native generator functions: // 0=emit->stack_start: nlr_buf_t // return_value // exc_handler_unwind [optional word] // // Then REG_GENERATOR_STATE points to: // 0=emit->code_state_start: mp_code_state_native_t // emit->stack_start: Python object stack | emit->n_state // locals (reversed, L0 at end) | // // C stack layout for viper functions: // 0: nlr_buf_t [optional] // return_value [optional word] // exc_handler_unwind [optional word] // emit->code_state_start: fun_obj, old_globals [optional] // emit->stack_start: Python object stack | emit->n_state // locals (reversed, L0 at end) | // (L0-L2 may be in regs instead) // Native emitter needs to know the following sizes and offsets of C structs (on the target): #if MICROPY_DYNAMIC_COMPILER #define SIZEOF_NLR_BUF (2 + mp_dynamic_compiler.nlr_buf_num_regs + 1) // the +1 is conservative in case MICROPY_ENABLE_PYSTACK enabled #else #define SIZEOF_NLR_BUF (sizeof(nlr_buf_t) / sizeof(uintptr_t)) #endif #define SIZEOF_CODE_STATE (sizeof(mp_code_state_native_t) / sizeof(uintptr_t)) #define OFFSETOF_CODE_STATE_STATE (offsetof(mp_code_state_native_t, state) / sizeof(uintptr_t)) #define OFFSETOF_CODE_STATE_FUN_BC (offsetof(mp_code_state_native_t, fun_bc) / sizeof(uintptr_t)) #define OFFSETOF_CODE_STATE_IP (offsetof(mp_code_state_native_t, ip) / sizeof(uintptr_t)) #define OFFSETOF_CODE_STATE_SP (offsetof(mp_code_state_native_t, sp) / sizeof(uintptr_t)) #define OFFSETOF_CODE_STATE_N_STATE (offsetof(mp_code_state_native_t, n_state) / sizeof(uintptr_t)) #define OFFSETOF_OBJ_FUN_BC_CONTEXT (offsetof(mp_obj_fun_bc_t, context) / sizeof(uintptr_t)) #define OFFSETOF_OBJ_FUN_BC_CHILD_TABLE (offsetof(mp_obj_fun_bc_t, child_table) / sizeof(uintptr_t)) #define OFFSETOF_OBJ_FUN_BC_BYTECODE (offsetof(mp_obj_fun_bc_t, bytecode) / sizeof(uintptr_t)) #define OFFSETOF_MODULE_CONTEXT_QSTR_TABLE (offsetof(mp_module_context_t, constants.qstr_table) / sizeof(uintptr_t)) #define OFFSETOF_MODULE_CONTEXT_OBJ_TABLE (offsetof(mp_module_context_t, constants.obj_table) / sizeof(uintptr_t)) #define OFFSETOF_MODULE_CONTEXT_GLOBALS (offsetof(mp_module_context_t, module.globals) / sizeof(uintptr_t)) // If not already defined, set parent args to same as child call registers #ifndef REG_PARENT_RET #define REG_PARENT_RET REG_RET #define REG_PARENT_ARG_1 REG_ARG_1 #define REG_PARENT_ARG_2 REG_ARG_2 #define REG_PARENT_ARG_3 REG_ARG_3 #define REG_PARENT_ARG_4 REG_ARG_4 #endif // Word index of nlr_buf_t.ret_val #define NLR_BUF_IDX_RET_VAL (1) // Whether the viper function needs access to fun_obj #define NEED_FUN_OBJ(emit) ((emit)->scope->exc_stack_size > 0 \ || ((emit)->scope->scope_flags & (MP_SCOPE_FLAG_REFGLOBALS | MP_SCOPE_FLAG_HASCONSTS))) // Whether the native/viper function needs to be wrapped in an exception handler #define NEED_GLOBAL_EXC_HANDLER(emit) ((emit)->scope->exc_stack_size > 0 \ || ((emit)->scope->scope_flags & (MP_SCOPE_FLAG_GENERATOR | MP_SCOPE_FLAG_REFGLOBALS))) // Whether a slot is needed to store LOCAL_IDX_EXC_HANDLER_UNWIND #define NEED_EXC_HANDLER_UNWIND(emit) ((emit)->scope->exc_stack_size > 0) // Whether registers can be used to store locals (only true if there are no // exception handlers, because otherwise an nlr_jump will restore registers to // their state at the start of the function and updates to locals will be lost) #define CAN_USE_REGS_FOR_LOCALS(emit) ((emit)->scope->exc_stack_size == 0 && !(emit->scope->scope_flags & MP_SCOPE_FLAG_GENERATOR)) // Indices within the local C stack for various variables #define LOCAL_IDX_EXC_VAL(emit) (NLR_BUF_IDX_RET_VAL) #define LOCAL_IDX_EXC_HANDLER_PC(emit) (NLR_BUF_IDX_LOCAL_1) #define LOCAL_IDX_EXC_HANDLER_UNWIND(emit) (SIZEOF_NLR_BUF + 1) // this needs a dedicated variable outside nlr_buf_t #define LOCAL_IDX_RET_VAL(emit) (SIZEOF_NLR_BUF) // needed when NEED_GLOBAL_EXC_HANDLER is true #define LOCAL_IDX_FUN_OBJ(emit) ((emit)->code_state_start + OFFSETOF_CODE_STATE_FUN_BC) #define LOCAL_IDX_OLD_GLOBALS(emit) ((emit)->code_state_start + OFFSETOF_CODE_STATE_IP) #define LOCAL_IDX_GEN_PC(emit) ((emit)->code_state_start + OFFSETOF_CODE_STATE_IP) #define LOCAL_IDX_LOCAL_VAR(emit, local_num) ((emit)->stack_start + (emit)->n_state - 1 - (local_num)) #if MICROPY_PERSISTENT_CODE_SAVE // When building with the ability to save native code to .mpy files: // - Qstrs are indirect via qstr_table, and REG_LOCAL_3 always points to qstr_table. // - In a generator no registers are used to store locals, and REG_LOCAL_2 points to the generator state. // - At most 2 registers hold local variables (see CAN_USE_REGS_FOR_LOCALS for when this is possible). #define REG_GENERATOR_STATE (REG_LOCAL_2) #define REG_QSTR_TABLE (REG_LOCAL_3) #define MAX_REGS_FOR_LOCAL_VARS (2) STATIC const uint8_t reg_local_table[MAX_REGS_FOR_LOCAL_VARS] = {REG_LOCAL_1, REG_LOCAL_2}; #else // When building without the ability to save native code to .mpy files: // - Qstrs values are written directly into the machine code. // - In a generator no registers are used to store locals, and REG_LOCAL_3 points to the generator state. // - At most 3 registers hold local variables (see CAN_USE_REGS_FOR_LOCALS for when this is possible). #define REG_GENERATOR_STATE (REG_LOCAL_3) #define MAX_REGS_FOR_LOCAL_VARS (3) STATIC const uint8_t reg_local_table[MAX_REGS_FOR_LOCAL_VARS] = {REG_LOCAL_1, REG_LOCAL_2, REG_LOCAL_3}; #endif #define REG_LOCAL_LAST (reg_local_table[MAX_REGS_FOR_LOCAL_VARS - 1]) #define EMIT_NATIVE_VIPER_TYPE_ERROR(emit, ...) do { \ *emit->error_slot = mp_obj_new_exception_msg_varg(&mp_type_ViperTypeError, __VA_ARGS__); \ } while (0) typedef enum { STACK_VALUE, STACK_REG, STACK_IMM, } stack_info_kind_t; // these enums must be distinct and the bottom 4 bits // must correspond to the correct MP_NATIVE_TYPE_xxx value typedef enum { VTYPE_PYOBJ = 0x00 | MP_NATIVE_TYPE_OBJ, VTYPE_BOOL = 0x00 | MP_NATIVE_TYPE_BOOL, VTYPE_INT = 0x00 | MP_NATIVE_TYPE_INT, VTYPE_UINT = 0x00 | MP_NATIVE_TYPE_UINT, VTYPE_PTR = 0x00 | MP_NATIVE_TYPE_PTR, VTYPE_PTR8 = 0x00 | MP_NATIVE_TYPE_PTR8, VTYPE_PTR16 = 0x00 | MP_NATIVE_TYPE_PTR16, VTYPE_PTR32 = 0x00 | MP_NATIVE_TYPE_PTR32, VTYPE_PTR_NONE = 0x50 | MP_NATIVE_TYPE_PTR, VTYPE_UNBOUND = 0x60 | MP_NATIVE_TYPE_OBJ, VTYPE_BUILTIN_CAST = 0x70 | MP_NATIVE_TYPE_OBJ, } vtype_kind_t; STATIC qstr vtype_to_qstr(vtype_kind_t vtype) { switch (vtype) { case VTYPE_PYOBJ: return MP_QSTR_object; case VTYPE_BOOL: return MP_QSTR_bool; case VTYPE_INT: return MP_QSTR_int; case VTYPE_UINT: return MP_QSTR_uint; case VTYPE_PTR: return MP_QSTR_ptr; case VTYPE_PTR8: return MP_QSTR_ptr8; case VTYPE_PTR16: return MP_QSTR_ptr16; case VTYPE_PTR32: return MP_QSTR_ptr32; case VTYPE_PTR_NONE: default: return MP_QSTR_None; } } typedef struct _stack_info_t { vtype_kind_t vtype; stack_info_kind_t kind; union { int u_reg; mp_int_t u_imm; } data; } stack_info_t; #define UNWIND_LABEL_UNUSED (0x7fff) #define UNWIND_LABEL_DO_FINAL_UNWIND (0x7ffe) typedef struct _exc_stack_entry_t { uint16_t label : 15; uint16_t is_finally : 1; uint16_t unwind_label : 15; uint16_t is_active : 1; } exc_stack_entry_t; struct _emit_t { mp_emit_common_t *emit_common; mp_obj_t *error_slot; uint *label_slot; uint exit_label; int pass; bool do_viper_types; bool prelude_offset_uses_u16_encoding; mp_uint_t local_vtype_alloc; vtype_kind_t *local_vtype; mp_uint_t stack_info_alloc; stack_info_t *stack_info; vtype_kind_t saved_stack_vtype; size_t exc_stack_alloc; size_t exc_stack_size; exc_stack_entry_t *exc_stack; int prelude_offset; int prelude_ptr_index; int start_offset; int n_state; uint16_t code_state_start; uint16_t stack_start; int stack_size; uint16_t n_info; uint16_t n_cell; scope_t *scope; ASM_T *as; }; STATIC void emit_load_reg_with_object(emit_t *emit, int reg, mp_obj_t obj); STATIC void emit_native_global_exc_entry(emit_t *emit); STATIC void emit_native_global_exc_exit(emit_t *emit); STATIC void emit_native_load_const_obj(emit_t *emit, mp_obj_t obj); emit_t *EXPORT_FUN(new)(mp_emit_common_t * emit_common, mp_obj_t *error_slot, uint *label_slot, mp_uint_t max_num_labels) { emit_t *emit = m_new0(emit_t, 1); emit->emit_common = emit_common; emit->error_slot = error_slot; emit->label_slot = label_slot; emit->stack_info_alloc = 8; emit->stack_info = m_new(stack_info_t, emit->stack_info_alloc); emit->exc_stack_alloc = 8; emit->exc_stack = m_new(exc_stack_entry_t, emit->exc_stack_alloc); emit->as = m_new0(ASM_T, 1); mp_asm_base_init(&emit->as->base, max_num_labels); return emit; } void EXPORT_FUN(free)(emit_t * emit) { mp_asm_base_deinit(&emit->as->base, false); m_del_obj(ASM_T, emit->as); m_del(exc_stack_entry_t, emit->exc_stack, emit->exc_stack_alloc); m_del(vtype_kind_t, emit->local_vtype, emit->local_vtype_alloc); m_del(stack_info_t, emit->stack_info, emit->stack_info_alloc); m_del_obj(emit_t, emit); } STATIC void emit_call_with_imm_arg(emit_t *emit, mp_fun_kind_t fun_kind, mp_int_t arg_val, int arg_reg); STATIC void emit_native_mov_reg_const(emit_t *emit, int reg_dest, int const_val) { ASM_LOAD_REG_REG_OFFSET(emit->as, reg_dest, REG_FUN_TABLE, const_val); } STATIC void emit_native_mov_state_reg(emit_t *emit, int local_num, int reg_src) { if (emit->scope->scope_flags & MP_SCOPE_FLAG_GENERATOR) { ASM_STORE_REG_REG_OFFSET(emit->as, reg_src, REG_GENERATOR_STATE, local_num); } else { ASM_MOV_LOCAL_REG(emit->as, local_num, reg_src); } } STATIC void emit_native_mov_reg_state(emit_t *emit, int reg_dest, int local_num) { if (emit->scope->scope_flags & MP_SCOPE_FLAG_GENERATOR) { ASM_LOAD_REG_REG_OFFSET(emit->as, reg_dest, REG_GENERATOR_STATE, local_num); } else { ASM_MOV_REG_LOCAL(emit->as, reg_dest, local_num); } } STATIC void emit_native_mov_reg_state_addr(emit_t *emit, int reg_dest, int local_num) { if (emit->scope->scope_flags & MP_SCOPE_FLAG_GENERATOR) { ASM_MOV_REG_IMM(emit->as, reg_dest, local_num * ASM_WORD_SIZE); ASM_ADD_REG_REG(emit->as, reg_dest, REG_GENERATOR_STATE); } else { ASM_MOV_REG_LOCAL_ADDR(emit->as, reg_dest, local_num); } } STATIC void emit_native_mov_reg_qstr(emit_t *emit, int arg_reg, qstr qst) { #if MICROPY_PERSISTENT_CODE_SAVE ASM_LOAD16_REG_REG_OFFSET(emit->as, arg_reg, REG_QSTR_TABLE, mp_emit_common_use_qstr(emit->emit_common, qst)); #else ASM_MOV_REG_IMM(emit->as, arg_reg, qst); #endif } STATIC void emit_native_mov_reg_qstr_obj(emit_t *emit, int reg_dest, qstr qst) { #if MICROPY_PERSISTENT_CODE_SAVE emit_load_reg_with_object(emit, reg_dest, MP_OBJ_NEW_QSTR(qst)); #else ASM_MOV_REG_IMM(emit->as, reg_dest, (mp_uint_t)MP_OBJ_NEW_QSTR(qst)); #endif } #define emit_native_mov_state_imm_via(emit, local_num, imm, reg_temp) \ do { \ ASM_MOV_REG_IMM((emit)->as, (reg_temp), (imm)); \ emit_native_mov_state_reg((emit), (local_num), (reg_temp)); \ } while (false) STATIC void emit_native_start_pass(emit_t *emit, pass_kind_t pass, scope_t *scope) { DEBUG_printf("start_pass(pass=%u, scope=%p)\n", pass, scope); emit->pass = pass; emit->do_viper_types = scope->emit_options == MP_EMIT_OPT_VIPER; emit->stack_size = 0; emit->scope = scope; // allocate memory for keeping track of the types of locals if (emit->local_vtype_alloc < scope->num_locals) { emit->local_vtype = m_renew(vtype_kind_t, emit->local_vtype, emit->local_vtype_alloc, scope->num_locals); emit->local_vtype_alloc = scope->num_locals; } // set default type for arguments mp_uint_t num_args = emit->scope->num_pos_args + emit->scope->num_kwonly_args; if (scope->scope_flags & MP_SCOPE_FLAG_VARARGS) { num_args += 1; } if (scope->scope_flags & MP_SCOPE_FLAG_VARKEYWORDS) { num_args += 1; } for (mp_uint_t i = 0; i < num_args; i++) { emit->local_vtype[i] = VTYPE_PYOBJ; } // Set viper type for arguments if (emit->do_viper_types) { for (int i = 0; i < emit->scope->id_info_len; ++i) { id_info_t *id = &emit->scope->id_info[i]; if (id->flags & ID_FLAG_IS_PARAM) { assert(id->local_num < emit->local_vtype_alloc); emit->local_vtype[id->local_num] = id->flags >> ID_FLAG_VIPER_TYPE_POS; } } } // local variables begin unbound, and have unknown type for (mp_uint_t i = num_args; i < emit->local_vtype_alloc; i++) { emit->local_vtype[i] = emit->do_viper_types ? VTYPE_UNBOUND : VTYPE_PYOBJ; } // values on stack begin unbound for (mp_uint_t i = 0; i < emit->stack_info_alloc; i++) { emit->stack_info[i].kind = STACK_VALUE; emit->stack_info[i].vtype = VTYPE_UNBOUND; } mp_asm_base_start_pass(&emit->as->base, pass == MP_PASS_EMIT ? MP_ASM_PASS_EMIT : MP_ASM_PASS_COMPUTE); // generate code for entry to function // Work out start of code state (mp_code_state_native_t or reduced version for viper) emit->code_state_start = 0; if (NEED_GLOBAL_EXC_HANDLER(emit)) { emit->code_state_start = SIZEOF_NLR_BUF; // for nlr_buf_t emit->code_state_start += 1; // for return_value if (NEED_EXC_HANDLER_UNWIND(emit)) { emit->code_state_start += 1; } } size_t fun_table_off = mp_emit_common_use_const_obj(emit->emit_common, MP_OBJ_FROM_PTR(&mp_fun_table)); if (emit->do_viper_types) { // Work out size of state (locals plus stack) // n_state counts all stack and locals, even those in registers emit->n_state = scope->num_locals + scope->stack_size; int num_locals_in_regs = 0; if (CAN_USE_REGS_FOR_LOCALS(emit)) { num_locals_in_regs = scope->num_locals; if (num_locals_in_regs > MAX_REGS_FOR_LOCAL_VARS) { num_locals_in_regs = MAX_REGS_FOR_LOCAL_VARS; } // Need a spot for REG_LOCAL_LAST (see below) if (scope->num_pos_args >= MAX_REGS_FOR_LOCAL_VARS + 1) { --num_locals_in_regs; } } // Work out where the locals and Python stack start within the C stack if (NEED_GLOBAL_EXC_HANDLER(emit)) { // Reserve 2 words for function object and old globals emit->stack_start = emit->code_state_start + 2; } else if (scope->scope_flags & MP_SCOPE_FLAG_HASCONSTS) { // Reserve 1 word for function object, to access const table emit->stack_start = emit->code_state_start + 1; } else { emit->stack_start = emit->code_state_start + 0; } // Entry to function ASM_ENTRY(emit->as, emit->stack_start + emit->n_state - num_locals_in_regs); #if N_X86 asm_x86_mov_arg_to_r32(emit->as, 0, REG_PARENT_ARG_1); #endif // Load REG_FUN_TABLE with a pointer to mp_fun_table, found in the const_table ASM_LOAD_REG_REG_OFFSET(emit->as, REG_FUN_TABLE, REG_PARENT_ARG_1, OFFSETOF_OBJ_FUN_BC_CONTEXT); #if MICROPY_PERSISTENT_CODE_SAVE ASM_LOAD_REG_REG_OFFSET(emit->as, REG_QSTR_TABLE, REG_FUN_TABLE, OFFSETOF_MODULE_CONTEXT_QSTR_TABLE); #endif ASM_LOAD_REG_REG_OFFSET(emit->as, REG_FUN_TABLE, REG_FUN_TABLE, OFFSETOF_MODULE_CONTEXT_OBJ_TABLE); ASM_LOAD_REG_REG_OFFSET(emit->as, REG_FUN_TABLE, REG_FUN_TABLE, fun_table_off); // Store function object (passed as first arg) to stack if needed if (NEED_FUN_OBJ(emit)) { ASM_MOV_LOCAL_REG(emit->as, LOCAL_IDX_FUN_OBJ(emit), REG_PARENT_ARG_1); } // Put n_args in REG_ARG_1, n_kw in REG_ARG_2, args array in REG_LOCAL_LAST #if N_X86 asm_x86_mov_arg_to_r32(emit->as, 1, REG_ARG_1); asm_x86_mov_arg_to_r32(emit->as, 2, REG_ARG_2); asm_x86_mov_arg_to_r32(emit->as, 3, REG_LOCAL_LAST); #else ASM_MOV_REG_REG(emit->as, REG_ARG_1, REG_PARENT_ARG_2); ASM_MOV_REG_REG(emit->as, REG_ARG_2, REG_PARENT_ARG_3); ASM_MOV_REG_REG(emit->as, REG_LOCAL_LAST, REG_PARENT_ARG_4); #endif // Check number of args matches this function, and call mp_arg_check_num_sig if not ASM_JUMP_IF_REG_NONZERO(emit->as, REG_ARG_2, *emit->label_slot + 4, true); ASM_MOV_REG_IMM(emit->as, REG_ARG_3, scope->num_pos_args); ASM_JUMP_IF_REG_EQ(emit->as, REG_ARG_1, REG_ARG_3, *emit->label_slot + 5); mp_asm_base_label_assign(&emit->as->base, *emit->label_slot + 4); ASM_MOV_REG_IMM(emit->as, REG_ARG_3, MP_OBJ_FUN_MAKE_SIG(scope->num_pos_args, scope->num_pos_args, false)); ASM_CALL_IND(emit->as, MP_F_ARG_CHECK_NUM_SIG); mp_asm_base_label_assign(&emit->as->base, *emit->label_slot + 5); // Store arguments into locals (reg or stack), converting to native if needed for (int i = 0; i < emit->scope->num_pos_args; i++) { int r = REG_ARG_1; ASM_LOAD_REG_REG_OFFSET(emit->as, REG_ARG_1, REG_LOCAL_LAST, i); if (emit->local_vtype[i] != VTYPE_PYOBJ) { emit_call_with_imm_arg(emit, MP_F_CONVERT_OBJ_TO_NATIVE, emit->local_vtype[i], REG_ARG_2); r = REG_RET; } // REG_LOCAL_LAST points to the args array so be sure not to overwrite it if it's still needed if (i < MAX_REGS_FOR_LOCAL_VARS && CAN_USE_REGS_FOR_LOCALS(emit) && (i != MAX_REGS_FOR_LOCAL_VARS - 1 || emit->scope->num_pos_args == MAX_REGS_FOR_LOCAL_VARS)) { ASM_MOV_REG_REG(emit->as, reg_local_table[i], r); } else { emit_native_mov_state_reg(emit, LOCAL_IDX_LOCAL_VAR(emit, i), r); } } // Get local from the stack back into REG_LOCAL_LAST if this reg couldn't be written to above if (emit->scope->num_pos_args >= MAX_REGS_FOR_LOCAL_VARS + 1 && CAN_USE_REGS_FOR_LOCALS(emit)) { ASM_MOV_REG_LOCAL(emit->as, REG_LOCAL_LAST, LOCAL_IDX_LOCAL_VAR(emit, MAX_REGS_FOR_LOCAL_VARS - 1)); } emit_native_global_exc_entry(emit); } else { // work out size of state (locals plus stack) emit->n_state = scope->num_locals + scope->stack_size; if (emit->scope->scope_flags & MP_SCOPE_FLAG_GENERATOR) { mp_asm_base_data(&emit->as->base, ASM_WORD_SIZE, (uintptr_t)emit->prelude_ptr_index); mp_asm_base_data(&emit->as->base, ASM_WORD_SIZE, (uintptr_t)emit->start_offset); ASM_ENTRY(emit->as, emit->code_state_start); // Reset the state size for the state pointed to by REG_GENERATOR_STATE emit->code_state_start = 0; emit->stack_start = SIZEOF_CODE_STATE; // Put address of code_state into REG_GENERATOR_STATE #if N_X86 asm_x86_mov_arg_to_r32(emit->as, 0, REG_GENERATOR_STATE); #else ASM_MOV_REG_REG(emit->as, REG_GENERATOR_STATE, REG_PARENT_ARG_1); #endif // Put throw value into LOCAL_IDX_EXC_VAL slot, for yield/yield-from #if N_X86 asm_x86_mov_arg_to_r32(emit->as, 1, REG_PARENT_ARG_2); #endif ASM_MOV_LOCAL_REG(emit->as, LOCAL_IDX_EXC_VAL(emit), REG_PARENT_ARG_2); // Load REG_FUN_TABLE with a pointer to mp_fun_table, found in the const_table ASM_LOAD_REG_REG_OFFSET(emit->as, REG_TEMP0, REG_GENERATOR_STATE, LOCAL_IDX_FUN_OBJ(emit)); ASM_LOAD_REG_REG_OFFSET(emit->as, REG_TEMP0, REG_TEMP0, OFFSETOF_OBJ_FUN_BC_CONTEXT); #if MICROPY_PERSISTENT_CODE_SAVE ASM_LOAD_REG_REG_OFFSET(emit->as, REG_QSTR_TABLE, REG_TEMP0, OFFSETOF_MODULE_CONTEXT_QSTR_TABLE); #endif ASM_LOAD_REG_REG_OFFSET(emit->as, REG_TEMP0, REG_TEMP0, OFFSETOF_MODULE_CONTEXT_OBJ_TABLE); ASM_LOAD_REG_REG_OFFSET(emit->as, REG_FUN_TABLE, REG_TEMP0, fun_table_off); } else { // The locals and stack start after the code_state structure emit->stack_start = emit->code_state_start + SIZEOF_CODE_STATE; // Allocate space on C-stack for code_state structure, which includes state ASM_ENTRY(emit->as, emit->stack_start + emit->n_state); // Prepare incoming arguments for call to mp_setup_code_state #if N_X86 asm_x86_mov_arg_to_r32(emit->as, 0, REG_PARENT_ARG_1); asm_x86_mov_arg_to_r32(emit->as, 1, REG_PARENT_ARG_2); asm_x86_mov_arg_to_r32(emit->as, 2, REG_PARENT_ARG_3); asm_x86_mov_arg_to_r32(emit->as, 3, REG_PARENT_ARG_4); #endif // Load REG_FUN_TABLE with a pointer to mp_fun_table, found in the const_table ASM_LOAD_REG_REG_OFFSET(emit->as, REG_FUN_TABLE, REG_PARENT_ARG_1, OFFSETOF_OBJ_FUN_BC_CONTEXT); #if MICROPY_PERSISTENT_CODE_SAVE ASM_LOAD_REG_REG_OFFSET(emit->as, REG_QSTR_TABLE, REG_FUN_TABLE, OFFSETOF_MODULE_CONTEXT_QSTR_TABLE); #endif ASM_LOAD_REG_REG_OFFSET(emit->as, REG_FUN_TABLE, REG_FUN_TABLE, OFFSETOF_MODULE_CONTEXT_OBJ_TABLE); ASM_LOAD_REG_REG_OFFSET(emit->as, REG_FUN_TABLE, REG_FUN_TABLE, fun_table_off); // Set code_state.fun_bc ASM_MOV_LOCAL_REG(emit->as, LOCAL_IDX_FUN_OBJ(emit), REG_PARENT_ARG_1); // Set code_state.ip, a pointer to the beginning of the prelude. This pointer is found // either directly in mp_obj_fun_bc_t.child_table (if there are no children), or in // mp_obj_fun_bc_t.child_table[num_children] (if num_children > 0). ASM_LOAD_REG_REG_OFFSET(emit->as, REG_PARENT_ARG_1, REG_PARENT_ARG_1, OFFSETOF_OBJ_FUN_BC_CHILD_TABLE); if (emit->prelude_ptr_index != 0) { ASM_LOAD_REG_REG_OFFSET(emit->as, REG_PARENT_ARG_1, REG_PARENT_ARG_1, emit->prelude_ptr_index); } emit_native_mov_state_reg(emit, emit->code_state_start + OFFSETOF_CODE_STATE_IP, REG_PARENT_ARG_1); // Set code_state.n_state (only works on little endian targets due to n_state being uint16_t) emit_native_mov_state_imm_via(emit, emit->code_state_start + OFFSETOF_CODE_STATE_N_STATE, emit->n_state, REG_ARG_1); // Put address of code_state into first arg ASM_MOV_REG_LOCAL_ADDR(emit->as, REG_ARG_1, emit->code_state_start); // Copy next 3 args if needed #if REG_ARG_2 != REG_PARENT_ARG_2 ASM_MOV_REG_REG(emit->as, REG_ARG_2, REG_PARENT_ARG_2); #endif #if REG_ARG_3 != REG_PARENT_ARG_3 ASM_MOV_REG_REG(emit->as, REG_ARG_3, REG_PARENT_ARG_3); #endif #if REG_ARG_4 != REG_PARENT_ARG_4 ASM_MOV_REG_REG(emit->as, REG_ARG_4, REG_PARENT_ARG_4); #endif // Call mp_setup_code_state to prepare code_state structure #if N_THUMB asm_thumb_bl_ind(emit->as, MP_F_SETUP_CODE_STATE, ASM_THUMB_REG_R4); #elif N_ARM asm_arm_bl_ind(emit->as, MP_F_SETUP_CODE_STATE, ASM_ARM_REG_R4); #else ASM_CALL_IND(emit->as, MP_F_SETUP_CODE_STATE); #endif } emit_native_global_exc_entry(emit); // cache some locals in registers, but only if no exception handlers if (CAN_USE_REGS_FOR_LOCALS(emit)) { for (int i = 0; i < MAX_REGS_FOR_LOCAL_VARS && i < scope->num_locals; ++i) { ASM_MOV_REG_LOCAL(emit->as, reg_local_table[i], LOCAL_IDX_LOCAL_VAR(emit, i)); } } // set the type of closed over variables for (mp_uint_t i = 0; i < scope->id_info_len; i++) { id_info_t *id = &scope->id_info[i]; if (id->kind == ID_INFO_KIND_CELL) { emit->local_vtype[id->local_num] = VTYPE_PYOBJ; } } } } static inline void emit_native_write_code_info_byte(emit_t *emit, byte val) { mp_asm_base_data(&emit->as->base, 1, val); } static inline void emit_native_write_code_info_qstr(emit_t *emit, qstr qst) { mp_encode_uint(&emit->as->base, mp_asm_base_get_cur_to_write_bytes, mp_emit_common_use_qstr(emit->emit_common, qst)); } STATIC bool emit_native_end_pass(emit_t *emit) { emit_native_global_exc_exit(emit); if (!emit->do_viper_types) { emit->prelude_offset = mp_asm_base_get_code_pos(&emit->as->base); emit->prelude_ptr_index = emit->emit_common->ct_cur_child; size_t n_state = emit->n_state; size_t n_exc_stack = 0; // exc-stack not needed for native code MP_BC_PRELUDE_SIG_ENCODE(n_state, n_exc_stack, emit->scope, emit_native_write_code_info_byte, emit); size_t n_info = emit->n_info; size_t n_cell = emit->n_cell; MP_BC_PRELUDE_SIZE_ENCODE(n_info, n_cell, emit_native_write_code_info_byte, emit); // bytecode prelude: source info (function and argument qstrs) size_t info_start = mp_asm_base_get_code_pos(&emit->as->base); emit_native_write_code_info_qstr(emit, emit->scope->simple_name); for (int i = 0; i < emit->scope->num_pos_args + emit->scope->num_kwonly_args; i++) { qstr qst = MP_QSTR__star_; for (int j = 0; j < emit->scope->id_info_len; ++j) { id_info_t *id = &emit->scope->id_info[j]; if ((id->flags & ID_FLAG_IS_PARAM) && id->local_num == i) { qst = id->qst; break; } } emit_native_write_code_info_qstr(emit, qst); } emit->n_info = mp_asm_base_get_code_pos(&emit->as->base) - info_start; // bytecode prelude: initialise closed over variables size_t cell_start = mp_asm_base_get_code_pos(&emit->as->base); for (int i = 0; i < emit->scope->id_info_len; i++) { id_info_t *id = &emit->scope->id_info[i]; if (id->kind == ID_INFO_KIND_CELL) { assert(id->local_num <= 255); mp_asm_base_data(&emit->as->base, 1, id->local_num); // write the local which should be converted to a cell } } emit->n_cell = mp_asm_base_get_code_pos(&emit->as->base) - cell_start; } ASM_END_PASS(emit->as); // check stack is back to zero size assert(emit->stack_size == 0); assert(emit->exc_stack_size == 0); if (emit->pass == MP_PASS_EMIT) { void *f = mp_asm_base_get_code(&emit->as->base); mp_uint_t f_len = mp_asm_base_get_code_size(&emit->as->base); mp_raw_code_t **children = emit->emit_common->children; if (!emit->do_viper_types) { #if MICROPY_EMIT_NATIVE_PRELUDE_SEPARATE_FROM_MACHINE_CODE // Executable code cannot be accessed byte-wise on this architecture, so copy // the prelude to a separate memory region that is byte-wise readable. void *buf = emit->as->base.code_base + emit->prelude_offset; size_t n = emit->as->base.code_offset - emit->prelude_offset; const uint8_t *prelude_ptr = memcpy(m_new(uint8_t, n), buf, n); #else // Point to the prelude directly, at the end of the machine code data. const uint8_t *prelude_ptr = (const uint8_t *)f + emit->prelude_offset; #endif // Store the pointer to the prelude using the child_table. assert(emit->prelude_ptr_index == emit->emit_common->ct_cur_child); if (emit->prelude_ptr_index == 0) { children = (void *)prelude_ptr; } else { children = m_renew(mp_raw_code_t *, children, emit->prelude_ptr_index, emit->prelude_ptr_index + 1); children[emit->prelude_ptr_index] = (void *)prelude_ptr; } } mp_emit_glue_assign_native(emit->scope->raw_code, emit->do_viper_types ? MP_CODE_NATIVE_VIPER : MP_CODE_NATIVE_PY, f, f_len, children, #if MICROPY_PERSISTENT_CODE_SAVE emit->emit_common->ct_cur_child, emit->prelude_offset, #endif emit->scope->scope_flags, 0, 0); } return true; } STATIC void ensure_extra_stack(emit_t *emit, size_t delta) { if (emit->stack_size + delta > emit->stack_info_alloc) { size_t new_alloc = (emit->stack_size + delta + 8) & ~3; emit->stack_info = m_renew(stack_info_t, emit->stack_info, emit->stack_info_alloc, new_alloc); emit->stack_info_alloc = new_alloc; } } STATIC void adjust_stack(emit_t *emit, mp_int_t stack_size_delta) { assert((mp_int_t)emit->stack_size + stack_size_delta >= 0); assert((mp_int_t)emit->stack_size + stack_size_delta <= (mp_int_t)emit->stack_info_alloc); emit->stack_size += stack_size_delta; if (emit->pass > MP_PASS_SCOPE && emit->stack_size > emit->scope->stack_size) { emit->scope->stack_size = emit->stack_size; } #if DEBUG_PRINT DEBUG_printf(" adjust_stack; stack_size=%d+%d; stack now:", emit->stack_size - stack_size_delta, stack_size_delta); for (int i = 0; i < emit->stack_size; i++) { stack_info_t *si = &emit->stack_info[i]; DEBUG_printf(" (v=%d k=%d %d)", si->vtype, si->kind, si->data.u_reg); } DEBUG_printf("\n"); #endif } STATIC void emit_native_adjust_stack_size(emit_t *emit, mp_int_t delta) { DEBUG_printf("adjust_stack_size(" INT_FMT ")\n", delta); if (delta > 0) { ensure_extra_stack(emit, delta); } // If we are adjusting the stack in a positive direction (pushing) then we // need to fill in values for the stack kind and vtype of the newly-pushed // entries. These should be set to "value" (ie not reg or imm) because we // should only need to adjust the stack due to a jump to this part in the // code (and hence we have settled the stack before the jump). for (mp_int_t i = 0; i < delta; i++) { stack_info_t *si = &emit->stack_info[emit->stack_size + i]; si->kind = STACK_VALUE; // TODO we don't know the vtype to use here. At the moment this is a // hack to get the case of multi comparison working. if (delta == 1) { si->vtype = emit->saved_stack_vtype; } else { si->vtype = VTYPE_PYOBJ; } } adjust_stack(emit, delta); } STATIC void emit_native_set_source_line(emit_t *emit, mp_uint_t source_line) { (void)emit; (void)source_line; } // this must be called at start of emit functions STATIC void emit_native_pre(emit_t *emit) { (void)emit; } // depth==0 is top, depth==1 is before top, etc STATIC stack_info_t *peek_stack(emit_t *emit, mp_uint_t depth) { return &emit->stack_info[emit->stack_size - 1 - depth]; } // depth==0 is top, depth==1 is before top, etc STATIC vtype_kind_t peek_vtype(emit_t *emit, mp_uint_t depth) { if (emit->do_viper_types) { return peek_stack(emit, depth)->vtype; } else { // Type is always PYOBJ even if the intermediate stored value is not return VTYPE_PYOBJ; } } // pos=1 is TOS, pos=2 is next, etc // use pos=0 for no skipping STATIC void need_reg_single(emit_t *emit, int reg_needed, int skip_stack_pos) { skip_stack_pos = emit->stack_size - skip_stack_pos; for (int i = 0; i < emit->stack_size; i++) { if (i != skip_stack_pos) { stack_info_t *si = &emit->stack_info[i]; if (si->kind == STACK_REG && si->data.u_reg == reg_needed) { si->kind = STACK_VALUE; emit_native_mov_state_reg(emit, emit->stack_start + i, si->data.u_reg); } } } } // Ensures all unsettled registers that hold Python values are copied to the // concrete Python stack. All registers are then free to use. STATIC void need_reg_all(emit_t *emit) { for (int i = 0; i < emit->stack_size; i++) { stack_info_t *si = &emit->stack_info[i]; if (si->kind == STACK_REG) { DEBUG_printf(" reg(%u) to local(%u)\n", si->data.u_reg, emit->stack_start + i); si->kind = STACK_VALUE; emit_native_mov_state_reg(emit, emit->stack_start + i, si->data.u_reg); } } } STATIC vtype_kind_t load_reg_stack_imm(emit_t *emit, int reg_dest, const stack_info_t *si, bool convert_to_pyobj) { if (!convert_to_pyobj && emit->do_viper_types) { ASM_MOV_REG_IMM(emit->as, reg_dest, si->data.u_imm); return si->vtype; } else { if (si->vtype == VTYPE_PYOBJ) { ASM_MOV_REG_IMM(emit->as, reg_dest, si->data.u_imm); } else if (si->vtype == VTYPE_BOOL) { emit_native_mov_reg_const(emit, reg_dest, MP_F_CONST_FALSE_OBJ + si->data.u_imm); } else if (si->vtype == VTYPE_INT || si->vtype == VTYPE_UINT) { ASM_MOV_REG_IMM(emit->as, reg_dest, (uintptr_t)MP_OBJ_NEW_SMALL_INT(si->data.u_imm)); } else if (si->vtype == VTYPE_PTR_NONE) { emit_native_mov_reg_const(emit, reg_dest, MP_F_CONST_NONE_OBJ); } else { mp_raise_NotImplementedError(MP_ERROR_TEXT("conversion to object")); } return VTYPE_PYOBJ; } } // Copies all unsettled registers and immediates that are Python values into the // concrete Python stack. This ensures the concrete Python stack holds valid // values for the current stack_size. // This function may clobber REG_TEMP1. STATIC void need_stack_settled(emit_t *emit) { DEBUG_printf(" need_stack_settled; stack_size=%d\n", emit->stack_size); need_reg_all(emit); for (int i = 0; i < emit->stack_size; i++) { stack_info_t *si = &emit->stack_info[i]; if (si->kind == STACK_IMM) { DEBUG_printf(" imm(" INT_FMT ") to local(%u)\n", si->data.u_imm, emit->stack_start + i); si->kind = STACK_VALUE; // using REG_TEMP1 to avoid clobbering REG_TEMP0 (aka REG_RET) si->vtype = load_reg_stack_imm(emit, REG_TEMP1, si, false); emit_native_mov_state_reg(emit, emit->stack_start + i, REG_TEMP1); } } } // pos=1 is TOS, pos=2 is next, etc STATIC void emit_access_stack(emit_t *emit, int pos, vtype_kind_t *vtype, int reg_dest) { need_reg_single(emit, reg_dest, pos); stack_info_t *si = &emit->stack_info[emit->stack_size - pos]; *vtype = si->vtype; switch (si->kind) { case STACK_VALUE: emit_native_mov_reg_state(emit, reg_dest, emit->stack_start + emit->stack_size - pos); break; case STACK_REG: if (si->data.u_reg != reg_dest) { ASM_MOV_REG_REG(emit->as, reg_dest, si->data.u_reg); } break; case STACK_IMM: *vtype = load_reg_stack_imm(emit, reg_dest, si, false); break; } } // does an efficient X=pop(); discard(); push(X) // needs a (non-temp) register in case the popped element was stored in the stack STATIC void emit_fold_stack_top(emit_t *emit, int reg_dest) { stack_info_t *si = &emit->stack_info[emit->stack_size - 2]; si[0] = si[1]; if (si->kind == STACK_VALUE) { // if folded element was on the stack we need to put it in a register emit_native_mov_reg_state(emit, reg_dest, emit->stack_start + emit->stack_size - 1); si->kind = STACK_REG; si->data.u_reg = reg_dest; } adjust_stack(emit, -1); } // If stacked value is in a register and the register is not r1 or r2, then // *reg_dest is set to that register. Otherwise the value is put in *reg_dest. STATIC void emit_pre_pop_reg_flexible(emit_t *emit, vtype_kind_t *vtype, int *reg_dest, int not_r1, int not_r2) { stack_info_t *si = peek_stack(emit, 0); if (si->kind == STACK_REG && si->data.u_reg != not_r1 && si->data.u_reg != not_r2) { *vtype = si->vtype; *reg_dest = si->data.u_reg; need_reg_single(emit, *reg_dest, 1); } else { emit_access_stack(emit, 1, vtype, *reg_dest); } adjust_stack(emit, -1); } STATIC void emit_pre_pop_discard(emit_t *emit) { adjust_stack(emit, -1); } STATIC void emit_pre_pop_reg(emit_t *emit, vtype_kind_t *vtype, int reg_dest) { emit_access_stack(emit, 1, vtype, reg_dest); adjust_stack(emit, -1); } STATIC void emit_pre_pop_reg_reg(emit_t *emit, vtype_kind_t *vtypea, int rega, vtype_kind_t *vtypeb, int regb) { emit_pre_pop_reg(emit, vtypea, rega); emit_pre_pop_reg(emit, vtypeb, regb); } STATIC void emit_pre_pop_reg_reg_reg(emit_t *emit, vtype_kind_t *vtypea, int rega, vtype_kind_t *vtypeb, int regb, vtype_kind_t *vtypec, int regc) { emit_pre_pop_reg(emit, vtypea, rega); emit_pre_pop_reg(emit, vtypeb, regb); emit_pre_pop_reg(emit, vtypec, regc); } STATIC void emit_post(emit_t *emit) { (void)emit; } STATIC void emit_post_top_set_vtype(emit_t *emit, vtype_kind_t new_vtype) { stack_info_t *si = &emit->stack_info[emit->stack_size - 1]; si->vtype = new_vtype; } STATIC void emit_post_push_reg(emit_t *emit, vtype_kind_t vtype, int reg) { ensure_extra_stack(emit, 1); stack_info_t *si = &emit->stack_info[emit->stack_size]; si->vtype = vtype; si->kind = STACK_REG; si->data.u_reg = reg; adjust_stack(emit, 1); } STATIC void emit_post_push_imm(emit_t *emit, vtype_kind_t vtype, mp_int_t imm) { ensure_extra_stack(emit, 1); stack_info_t *si = &emit->stack_info[emit->stack_size]; si->vtype = vtype; si->kind = STACK_IMM; si->data.u_imm = imm; adjust_stack(emit, 1); } STATIC void emit_post_push_reg_reg(emit_t *emit, vtype_kind_t vtypea, int rega, vtype_kind_t vtypeb, int regb) { emit_post_push_reg(emit, vtypea, rega); emit_post_push_reg(emit, vtypeb, regb); } STATIC void emit_post_push_reg_reg_reg(emit_t *emit, vtype_kind_t vtypea, int rega, vtype_kind_t vtypeb, int regb, vtype_kind_t vtypec, int regc) { emit_post_push_reg(emit, vtypea, rega); emit_post_push_reg(emit, vtypeb, regb); emit_post_push_reg(emit, vtypec, regc); } STATIC void emit_post_push_reg_reg_reg_reg(emit_t *emit, vtype_kind_t vtypea, int rega, vtype_kind_t vtypeb, int regb, vtype_kind_t vtypec, int regc, vtype_kind_t vtyped, int regd) { emit_post_push_reg(emit, vtypea, rega); emit_post_push_reg(emit, vtypeb, regb); emit_post_push_reg(emit, vtypec, regc); emit_post_push_reg(emit, vtyped, regd); } STATIC void emit_call(emit_t *emit, mp_fun_kind_t fun_kind) { need_reg_all(emit); ASM_CALL_IND(emit->as, fun_kind); } STATIC void emit_call_with_imm_arg(emit_t *emit, mp_fun_kind_t fun_kind, mp_int_t arg_val, int arg_reg) { need_reg_all(emit); ASM_MOV_REG_IMM(emit->as, arg_reg, arg_val); ASM_CALL_IND(emit->as, fun_kind); } STATIC void emit_call_with_2_imm_args(emit_t *emit, mp_fun_kind_t fun_kind, mp_int_t arg_val1, int arg_reg1, mp_int_t arg_val2, int arg_reg2) { need_reg_all(emit); ASM_MOV_REG_IMM(emit->as, arg_reg1, arg_val1); ASM_MOV_REG_IMM(emit->as, arg_reg2, arg_val2); ASM_CALL_IND(emit->as, fun_kind); } STATIC void emit_call_with_qstr_arg(emit_t *emit, mp_fun_kind_t fun_kind, qstr qst, int arg_reg) { need_reg_all(emit); emit_native_mov_reg_qstr(emit, arg_reg, qst); ASM_CALL_IND(emit->as, fun_kind); } // vtype of all n_pop objects is VTYPE_PYOBJ // Will convert any items that are not VTYPE_PYOBJ to this type and put them back on the stack. // If any conversions of non-immediate values are needed, then it uses REG_ARG_1, REG_ARG_2 and REG_RET. // Otherwise, it does not use any temporary registers (but may use reg_dest before loading it with stack pointer). STATIC void emit_get_stack_pointer_to_reg_for_pop(emit_t *emit, mp_uint_t reg_dest, mp_uint_t n_pop) { need_reg_all(emit); // First, store any immediate values to their respective place on the stack. for (mp_uint_t i = 0; i < n_pop; i++) { stack_info_t *si = &emit->stack_info[emit->stack_size - 1 - i]; // must push any imm's to stack // must convert them to VTYPE_PYOBJ for viper code if (si->kind == STACK_IMM) { si->kind = STACK_VALUE; si->vtype = load_reg_stack_imm(emit, reg_dest, si, true); emit_native_mov_state_reg(emit, emit->stack_start + emit->stack_size - 1 - i, reg_dest); } // verify that this value is on the stack assert(si->kind == STACK_VALUE); } // Second, convert any non-VTYPE_PYOBJ to that type. for (mp_uint_t i = 0; i < n_pop; i++) { stack_info_t *si = &emit->stack_info[emit->stack_size - 1 - i]; if (si->vtype != VTYPE_PYOBJ) { mp_uint_t local_num = emit->stack_start + emit->stack_size - 1 - i; emit_native_mov_reg_state(emit, REG_ARG_1, local_num); emit_call_with_imm_arg(emit, MP_F_CONVERT_NATIVE_TO_OBJ, si->vtype, REG_ARG_2); // arg2 = type emit_native_mov_state_reg(emit, local_num, REG_RET); si->vtype = VTYPE_PYOBJ; DEBUG_printf(" convert_native_to_obj(local_num=" UINT_FMT ")\n", local_num); } } // Adujust the stack for a pop of n_pop items, and load the stack pointer into reg_dest. adjust_stack(emit, -n_pop); emit_native_mov_reg_state_addr(emit, reg_dest, emit->stack_start + emit->stack_size); } // vtype of all n_push objects is VTYPE_PYOBJ STATIC void emit_get_stack_pointer_to_reg_for_push(emit_t *emit, mp_uint_t reg_dest, mp_uint_t n_push) { need_reg_all(emit); ensure_extra_stack(emit, n_push); for (mp_uint_t i = 0; i < n_push; i++) { emit->stack_info[emit->stack_size + i].kind = STACK_VALUE; emit->stack_info[emit->stack_size + i].vtype = VTYPE_PYOBJ; } emit_native_mov_reg_state_addr(emit, reg_dest, emit->stack_start + emit->stack_size); adjust_stack(emit, n_push); } STATIC void emit_native_push_exc_stack(emit_t *emit, uint label, bool is_finally) { if (emit->exc_stack_size + 1 > emit->exc_stack_alloc) { size_t new_alloc = emit->exc_stack_alloc + 4; emit->exc_stack = m_renew(exc_stack_entry_t, emit->exc_stack, emit->exc_stack_alloc, new_alloc); emit->exc_stack_alloc = new_alloc; } exc_stack_entry_t *e = &emit->exc_stack[emit->exc_stack_size++]; e->label = label; e->is_finally = is_finally; e->unwind_label = UNWIND_LABEL_UNUSED; e->is_active = true; ASM_MOV_REG_PCREL(emit->as, REG_RET, label); ASM_MOV_LOCAL_REG(emit->as, LOCAL_IDX_EXC_HANDLER_PC(emit), REG_RET); } STATIC void emit_native_leave_exc_stack(emit_t *emit, bool start_of_handler) { assert(emit->exc_stack_size > 0); // Get current exception handler and deactivate it exc_stack_entry_t *e = &emit->exc_stack[emit->exc_stack_size - 1]; e->is_active = false; // Find next innermost active exception handler, to restore as current handler for (--e; e >= emit->exc_stack && !e->is_active; --e) { } // Update the PC of the new exception handler if (e < emit->exc_stack) { // No active handler, clear handler PC to zero if (start_of_handler) { // Optimisation: PC is already cleared by global exc handler return; } ASM_XOR_REG_REG(emit->as, REG_RET, REG_RET); } else { // Found new active handler, get its PC ASM_MOV_REG_PCREL(emit->as, REG_RET, e->label); } ASM_MOV_LOCAL_REG(emit->as, LOCAL_IDX_EXC_HANDLER_PC(emit), REG_RET); } STATIC exc_stack_entry_t *emit_native_pop_exc_stack(emit_t *emit) { assert(emit->exc_stack_size > 0); exc_stack_entry_t *e = &emit->exc_stack[--emit->exc_stack_size]; assert(e->is_active == false); return e; } STATIC void emit_load_reg_with_object(emit_t *emit, int reg, mp_obj_t obj) { emit->scope->scope_flags |= MP_SCOPE_FLAG_HASCONSTS; size_t table_off = mp_emit_common_use_const_obj(emit->emit_common, obj); emit_native_mov_reg_state(emit, REG_TEMP0, LOCAL_IDX_FUN_OBJ(emit)); ASM_LOAD_REG_REG_OFFSET(emit->as, REG_TEMP0, REG_TEMP0, OFFSETOF_OBJ_FUN_BC_CONTEXT); ASM_LOAD_REG_REG_OFFSET(emit->as, REG_TEMP0, REG_TEMP0, OFFSETOF_MODULE_CONTEXT_OBJ_TABLE); ASM_LOAD_REG_REG_OFFSET(emit->as, reg, REG_TEMP0, table_off); } STATIC void emit_load_reg_with_child(emit_t *emit, int reg, mp_raw_code_t *rc) { size_t table_off = mp_emit_common_alloc_const_child(emit->emit_common, rc); emit_native_mov_reg_state(emit, REG_TEMP0, LOCAL_IDX_FUN_OBJ(emit)); ASM_LOAD_REG_REG_OFFSET(emit->as, REG_TEMP0, REG_TEMP0, OFFSETOF_OBJ_FUN_BC_CHILD_TABLE); ASM_LOAD_REG_REG_OFFSET(emit->as, reg, REG_TEMP0, table_off); } STATIC void emit_native_label_assign(emit_t *emit, mp_uint_t l) { DEBUG_printf("label_assign(" UINT_FMT ")\n", l); bool is_finally = false; if (emit->exc_stack_size > 0) { exc_stack_entry_t *e = &emit->exc_stack[emit->exc_stack_size - 1]; is_finally = e->is_finally && e->label == l; } if (is_finally) { // Label is at start of finally handler: store TOS into exception slot vtype_kind_t vtype; emit_pre_pop_reg(emit, &vtype, REG_TEMP0); ASM_MOV_LOCAL_REG(emit->as, LOCAL_IDX_EXC_VAL(emit), REG_TEMP0); } emit_native_pre(emit); // need to commit stack because we can jump here from elsewhere need_stack_settled(emit); mp_asm_base_label_assign(&emit->as->base, l); emit_post(emit); if (is_finally) { // Label is at start of finally handler: pop exception stack emit_native_leave_exc_stack(emit, false); } } STATIC void emit_native_global_exc_entry(emit_t *emit) { // Note: 4 labels are reserved for this function, starting at *emit->label_slot emit->exit_label = *emit->label_slot; if (NEED_GLOBAL_EXC_HANDLER(emit)) { mp_uint_t nlr_label = *emit->label_slot + 1; mp_uint_t start_label = *emit->label_slot + 2; mp_uint_t global_except_label = *emit->label_slot + 3; if (!(emit->scope->scope_flags & MP_SCOPE_FLAG_GENERATOR)) { // Set new globals emit_native_mov_reg_state(emit, REG_ARG_1, LOCAL_IDX_FUN_OBJ(emit)); ASM_LOAD_REG_REG_OFFSET(emit->as, REG_ARG_1, REG_ARG_1, OFFSETOF_OBJ_FUN_BC_CONTEXT); ASM_LOAD_REG_REG_OFFSET(emit->as, REG_ARG_1, REG_ARG_1, OFFSETOF_MODULE_CONTEXT_GLOBALS); emit_call(emit, MP_F_NATIVE_SWAP_GLOBALS); // Save old globals (or NULL if globals didn't change) emit_native_mov_state_reg(emit, LOCAL_IDX_OLD_GLOBALS(emit), REG_RET); } if (emit->scope->exc_stack_size == 0) { if (!(emit->scope->scope_flags & MP_SCOPE_FLAG_GENERATOR)) { // Optimisation: if globals didn't change don't push the nlr context ASM_JUMP_IF_REG_ZERO(emit->as, REG_RET, start_label, false); } // Wrap everything in an nlr context ASM_MOV_REG_LOCAL_ADDR(emit->as, REG_ARG_1, 0); emit_call(emit, MP_F_NLR_PUSH); #if N_NLR_SETJMP ASM_MOV_REG_LOCAL_ADDR(emit->as, REG_ARG_1, 2); emit_call(emit, MP_F_SETJMP); #endif ASM_JUMP_IF_REG_ZERO(emit->as, REG_RET, start_label, true); } else { // Clear the unwind state ASM_XOR_REG_REG(emit->as, REG_TEMP0, REG_TEMP0); ASM_MOV_LOCAL_REG(emit->as, LOCAL_IDX_EXC_HANDLER_UNWIND(emit), REG_TEMP0); // Put PC of start code block into REG_LOCAL_1 ASM_MOV_REG_PCREL(emit->as, REG_LOCAL_1, start_label); // Wrap everything in an nlr context emit_native_label_assign(emit, nlr_label); ASM_MOV_REG_LOCAL_ADDR(emit->as, REG_ARG_1, 0); emit_call(emit, MP_F_NLR_PUSH); #if N_NLR_SETJMP ASM_MOV_REG_LOCAL_ADDR(emit->as, REG_ARG_1, 2); emit_call(emit, MP_F_SETJMP); #endif ASM_JUMP_IF_REG_NONZERO(emit->as, REG_RET, global_except_label, true); // Clear PC of current code block, and jump there to resume execution ASM_XOR_REG_REG(emit->as, REG_TEMP0, REG_TEMP0); ASM_MOV_LOCAL_REG(emit->as, LOCAL_IDX_EXC_HANDLER_PC(emit), REG_TEMP0); ASM_JUMP_REG(emit->as, REG_LOCAL_1); // Global exception handler: check for valid exception handler emit_native_label_assign(emit, global_except_label); ASM_MOV_REG_LOCAL(emit->as, REG_LOCAL_1, LOCAL_IDX_EXC_HANDLER_PC(emit)); ASM_JUMP_IF_REG_NONZERO(emit->as, REG_LOCAL_1, nlr_label, false); } if (!(emit->scope->scope_flags & MP_SCOPE_FLAG_GENERATOR)) { // Restore old globals emit_native_mov_reg_state(emit, REG_ARG_1, LOCAL_IDX_OLD_GLOBALS(emit)); emit_call(emit, MP_F_NATIVE_SWAP_GLOBALS); } if (emit->scope->scope_flags & MP_SCOPE_FLAG_GENERATOR) { // Store return value in state[0] ASM_MOV_REG_LOCAL(emit->as, REG_TEMP0, LOCAL_IDX_EXC_VAL(emit)); ASM_STORE_REG_REG_OFFSET(emit->as, REG_TEMP0, REG_GENERATOR_STATE, OFFSETOF_CODE_STATE_STATE); // Load return kind ASM_MOV_REG_IMM(emit->as, REG_PARENT_RET, MP_VM_RETURN_EXCEPTION); ASM_EXIT(emit->as); } else { // Re-raise exception out to caller ASM_MOV_REG_LOCAL(emit->as, REG_ARG_1, LOCAL_IDX_EXC_VAL(emit)); emit_call(emit, MP_F_NATIVE_RAISE); } // Label for start of function emit_native_label_assign(emit, start_label); if (emit->scope->scope_flags & MP_SCOPE_FLAG_GENERATOR) { emit_native_mov_reg_state(emit, REG_TEMP0, LOCAL_IDX_GEN_PC(emit)); ASM_JUMP_REG(emit->as, REG_TEMP0); emit->start_offset = mp_asm_base_get_code_pos(&emit->as->base); // This is the first entry of the generator // Check LOCAL_IDX_EXC_VAL for any injected value ASM_MOV_REG_LOCAL(emit->as, REG_ARG_1, LOCAL_IDX_EXC_VAL(emit)); emit_call(emit, MP_F_NATIVE_RAISE); } } } STATIC void emit_native_global_exc_exit(emit_t *emit) { // Label for end of function emit_native_label_assign(emit, emit->exit_label); if (NEED_GLOBAL_EXC_HANDLER(emit)) { // Get old globals if (!(emit->scope->scope_flags & MP_SCOPE_FLAG_GENERATOR)) { emit_native_mov_reg_state(emit, REG_ARG_1, LOCAL_IDX_OLD_GLOBALS(emit)); if (emit->scope->exc_stack_size == 0) { // Optimisation: if globals didn't change then don't restore them and don't do nlr_pop ASM_JUMP_IF_REG_ZERO(emit->as, REG_ARG_1, emit->exit_label + 1, false); } // Restore old globals emit_call(emit, MP_F_NATIVE_SWAP_GLOBALS); } // Pop the nlr context emit_call(emit, MP_F_NLR_POP); if (!(emit->scope->scope_flags & MP_SCOPE_FLAG_GENERATOR)) { if (emit->scope->exc_stack_size == 0) { // Destination label for above optimisation emit_native_label_assign(emit, emit->exit_label + 1); } } // Load return value ASM_MOV_REG_LOCAL(emit->as, REG_PARENT_RET, LOCAL_IDX_RET_VAL(emit)); } ASM_EXIT(emit->as); } STATIC void emit_native_import_name(emit_t *emit, qstr qst) { DEBUG_printf("import_name %s\n", qstr_str(qst)); // get arguments from stack: arg2 = fromlist, arg3 = level // If using viper types these arguments must be converted to proper objects, and // to accomplish this viper types are turned off for the emit_pre_pop_reg_reg call. bool orig_do_viper_types = emit->do_viper_types; emit->do_viper_types = false; vtype_kind_t vtype_fromlist; vtype_kind_t vtype_level; emit_pre_pop_reg_reg(emit, &vtype_fromlist, REG_ARG_2, &vtype_level, REG_ARG_3); assert(vtype_fromlist == VTYPE_PYOBJ); assert(vtype_level == VTYPE_PYOBJ); emit->do_viper_types = orig_do_viper_types; emit_call_with_qstr_arg(emit, MP_F_IMPORT_NAME, qst, REG_ARG_1); // arg1 = import name emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET); } STATIC void emit_native_import_from(emit_t *emit, qstr qst) { DEBUG_printf("import_from %s\n", qstr_str(qst)); emit_native_pre(emit); vtype_kind_t vtype_module; emit_access_stack(emit, 1, &vtype_module, REG_ARG_1); // arg1 = module assert(vtype_module == VTYPE_PYOBJ); emit_call_with_qstr_arg(emit, MP_F_IMPORT_FROM, qst, REG_ARG_2); // arg2 = import name emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET); } STATIC void emit_native_import_star(emit_t *emit) { DEBUG_printf("import_star\n"); vtype_kind_t vtype_module; emit_pre_pop_reg(emit, &vtype_module, REG_ARG_1); // arg1 = module assert(vtype_module == VTYPE_PYOBJ); emit_call(emit, MP_F_IMPORT_ALL); emit_post(emit); } STATIC void emit_native_import(emit_t *emit, qstr qst, int kind) { if (kind == MP_EMIT_IMPORT_NAME) { emit_native_import_name(emit, qst); } else if (kind == MP_EMIT_IMPORT_FROM) { emit_native_import_from(emit, qst); } else { emit_native_import_star(emit); } } STATIC void emit_native_load_const_tok(emit_t *emit, mp_token_kind_t tok) { DEBUG_printf("load_const_tok(tok=%u)\n", tok); if (tok == MP_TOKEN_ELLIPSIS) { emit_native_load_const_obj(emit, MP_OBJ_FROM_PTR(&mp_const_ellipsis_obj)); } else { emit_native_pre(emit); if (tok == MP_TOKEN_KW_NONE) { emit_post_push_imm(emit, VTYPE_PTR_NONE, 0); } else { emit_post_push_imm(emit, VTYPE_BOOL, tok == MP_TOKEN_KW_FALSE ? 0 : 1); } } } STATIC void emit_native_load_const_small_int(emit_t *emit, mp_int_t arg) { DEBUG_printf("load_const_small_int(int=" INT_FMT ")\n", arg); emit_native_pre(emit); emit_post_push_imm(emit, VTYPE_INT, arg); } STATIC void emit_native_load_const_str(emit_t *emit, qstr qst) { emit_native_pre(emit); // TODO: Eventually we want to be able to work with raw pointers in viper to // do native array access. For now we just load them as any other object. /* if (emit->do_viper_types) { // load a pointer to the asciiz string? emit_post_push_imm(emit, VTYPE_PTR, (mp_uint_t)qstr_str(qst)); } else */ { need_reg_single(emit, REG_TEMP0, 0); emit_native_mov_reg_qstr_obj(emit, REG_TEMP0, qst); emit_post_push_reg(emit, VTYPE_PYOBJ, REG_TEMP0); } } STATIC void emit_native_load_const_obj(emit_t *emit, mp_obj_t obj) { emit_native_pre(emit); need_reg_single(emit, REG_RET, 0); emit_load_reg_with_object(emit, REG_RET, obj); emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET); } STATIC void emit_native_load_null(emit_t *emit) { emit_native_pre(emit); emit_post_push_imm(emit, VTYPE_PYOBJ, 0); } STATIC void emit_native_load_fast(emit_t *emit, qstr qst, mp_uint_t local_num) { DEBUG_printf("load_fast(%s, " UINT_FMT ")\n", qstr_str(qst), local_num); vtype_kind_t vtype = emit->local_vtype[local_num]; if (vtype == VTYPE_UNBOUND) { EMIT_NATIVE_VIPER_TYPE_ERROR(emit, MP_ERROR_TEXT("local '%q' used before type known"), qst); } emit_native_pre(emit); if (local_num < MAX_REGS_FOR_LOCAL_VARS && CAN_USE_REGS_FOR_LOCALS(emit)) { emit_post_push_reg(emit, vtype, reg_local_table[local_num]); } else { need_reg_single(emit, REG_TEMP0, 0); emit_native_mov_reg_state(emit, REG_TEMP0, LOCAL_IDX_LOCAL_VAR(emit, local_num)); emit_post_push_reg(emit, vtype, REG_TEMP0); } } STATIC void emit_native_load_deref(emit_t *emit, qstr qst, mp_uint_t local_num) { DEBUG_printf("load_deref(%s, " UINT_FMT ")\n", qstr_str(qst), local_num); need_reg_single(emit, REG_RET, 0); emit_native_load_fast(emit, qst, local_num); vtype_kind_t vtype; int reg_base = REG_RET; emit_pre_pop_reg_flexible(emit, &vtype, ®_base, -1, -1); ASM_LOAD_REG_REG_OFFSET(emit->as, REG_RET, reg_base, 1); // closed over vars are always Python objects emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET); } STATIC void emit_native_load_local(emit_t *emit, qstr qst, mp_uint_t local_num, int kind) { if (kind == MP_EMIT_IDOP_LOCAL_FAST) { emit_native_load_fast(emit, qst, local_num); } else { emit_native_load_deref(emit, qst, local_num); } } STATIC void emit_native_load_global(emit_t *emit, qstr qst, int kind) { MP_STATIC_ASSERT(MP_F_LOAD_NAME + MP_EMIT_IDOP_GLOBAL_NAME == MP_F_LOAD_NAME); MP_STATIC_ASSERT(MP_F_LOAD_NAME + MP_EMIT_IDOP_GLOBAL_GLOBAL == MP_F_LOAD_GLOBAL); emit_native_pre(emit); if (kind == MP_EMIT_IDOP_GLOBAL_NAME) { DEBUG_printf("load_name(%s)\n", qstr_str(qst)); } else { DEBUG_printf("load_global(%s)\n", qstr_str(qst)); if (emit->do_viper_types) { // check for builtin casting operators int native_type = mp_native_type_from_qstr(qst); if (native_type >= MP_NATIVE_TYPE_BOOL) { emit_post_push_imm(emit, VTYPE_BUILTIN_CAST, native_type); return; } } } emit_call_with_qstr_arg(emit, MP_F_LOAD_NAME + kind, qst, REG_ARG_1); emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET); } STATIC void emit_native_load_attr(emit_t *emit, qstr qst) { // depends on type of subject: // - integer, function, pointer to integers: error // - pointer to structure: get member, quite easy // - Python object: call mp_load_attr, and needs to be typed to convert result vtype_kind_t vtype_base; emit_pre_pop_reg(emit, &vtype_base, REG_ARG_1); // arg1 = base assert(vtype_base == VTYPE_PYOBJ); emit_call_with_qstr_arg(emit, MP_F_LOAD_ATTR, qst, REG_ARG_2); // arg2 = attribute name emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET); } STATIC void emit_native_load_method(emit_t *emit, qstr qst, bool is_super) { if (is_super) { emit_get_stack_pointer_to_reg_for_pop(emit, REG_ARG_2, 3); // arg2 = dest ptr emit_get_stack_pointer_to_reg_for_push(emit, REG_ARG_2, 2); // arg2 = dest ptr emit_call_with_qstr_arg(emit, MP_F_LOAD_SUPER_METHOD, qst, REG_ARG_1); // arg1 = method name } else { vtype_kind_t vtype_base; emit_pre_pop_reg(emit, &vtype_base, REG_ARG_1); // arg1 = base assert(vtype_base == VTYPE_PYOBJ); emit_get_stack_pointer_to_reg_for_push(emit, REG_ARG_3, 2); // arg3 = dest ptr emit_call_with_qstr_arg(emit, MP_F_LOAD_METHOD, qst, REG_ARG_2); // arg2 = method name } } STATIC void emit_native_load_build_class(emit_t *emit) { emit_native_pre(emit); emit_call(emit, MP_F_LOAD_BUILD_CLASS); emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET); } STATIC void emit_native_load_subscr(emit_t *emit) { DEBUG_printf("load_subscr\n"); // need to compile: base[index] // pop: index, base // optimise case where index is an immediate vtype_kind_t vtype_base = peek_vtype(emit, 1); if (vtype_base == VTYPE_PYOBJ) { // standard Python subscr // TODO factor this implicit cast code with other uses of it vtype_kind_t vtype_index = peek_vtype(emit, 0); if (vtype_index == VTYPE_PYOBJ) { emit_pre_pop_reg(emit, &vtype_index, REG_ARG_2); } else { emit_pre_pop_reg(emit, &vtype_index, REG_ARG_1); emit_call_with_imm_arg(emit, MP_F_CONVERT_NATIVE_TO_OBJ, vtype_index, REG_ARG_2); // arg2 = type ASM_MOV_REG_REG(emit->as, REG_ARG_2, REG_RET); } emit_pre_pop_reg(emit, &vtype_base, REG_ARG_1); emit_call_with_imm_arg(emit, MP_F_OBJ_SUBSCR, (mp_uint_t)MP_OBJ_SENTINEL, REG_ARG_3); emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET); } else { // viper load // TODO The different machine architectures have very different // capabilities and requirements for loads, so probably best to // write a completely separate load-optimiser for each one. stack_info_t *top = peek_stack(emit, 0); if (top->vtype == VTYPE_INT && top->kind == STACK_IMM) { // index is an immediate mp_int_t index_value = top->data.u_imm; emit_pre_pop_discard(emit); // discard index int reg_base = REG_ARG_1; int reg_index = REG_ARG_2; emit_pre_pop_reg_flexible(emit, &vtype_base, ®_base, reg_index, reg_index); need_reg_single(emit, REG_RET, 0); switch (vtype_base) { case VTYPE_PTR8: { // pointer to 8-bit memory // TODO optimise to use thumb ldrb r1, [r2, r3] if (index_value != 0) { // index is non-zero #if N_THUMB if (index_value > 0 && index_value < 32) { asm_thumb_ldrb_rlo_rlo_i5(emit->as, REG_RET, reg_base, index_value); break; } #endif need_reg_single(emit, reg_index, 0); ASM_MOV_REG_IMM(emit->as, reg_index, index_value); ASM_ADD_REG_REG(emit->as, reg_index, reg_base); // add index to base reg_base = reg_index; } ASM_LOAD8_REG_REG(emit->as, REG_RET, reg_base); // load from (base+index) break; } case VTYPE_PTR16: { // pointer to 16-bit memory if (index_value != 0) { // index is a non-zero immediate #if N_THUMB if (index_value > 0 && index_value < 32) { asm_thumb_ldrh_rlo_rlo_i5(emit->as, REG_RET, reg_base, index_value); break; } #endif need_reg_single(emit, reg_index, 0); ASM_MOV_REG_IMM(emit->as, reg_index, index_value << 1); ASM_ADD_REG_REG(emit->as, reg_index, reg_base); // add 2*index to base reg_base = reg_index; } ASM_LOAD16_REG_REG(emit->as, REG_RET, reg_base); // load from (base+2*index) break; } case VTYPE_PTR32: { // pointer to 32-bit memory if (index_value != 0) { // index is a non-zero immediate #if N_THUMB if (index_value > 0 && index_value < 32) { asm_thumb_ldr_rlo_rlo_i5(emit->as, REG_RET, reg_base, index_value); break; } #endif need_reg_single(emit, reg_index, 0); ASM_MOV_REG_IMM(emit->as, reg_index, index_value << 2); ASM_ADD_REG_REG(emit->as, reg_index, reg_base); // add 4*index to base reg_base = reg_index; } ASM_LOAD32_REG_REG(emit->as, REG_RET, reg_base); // load from (base+4*index) break; } default: EMIT_NATIVE_VIPER_TYPE_ERROR(emit, MP_ERROR_TEXT("can't load from '%q'"), vtype_to_qstr(vtype_base)); } } else { // index is not an immediate vtype_kind_t vtype_index; int reg_index = REG_ARG_2; emit_pre_pop_reg_flexible(emit, &vtype_index, ®_index, REG_ARG_1, REG_ARG_1); emit_pre_pop_reg(emit, &vtype_base, REG_ARG_1); need_reg_single(emit, REG_RET, 0); if (vtype_index != VTYPE_INT && vtype_index != VTYPE_UINT) { EMIT_NATIVE_VIPER_TYPE_ERROR(emit, MP_ERROR_TEXT("can't load with '%q' index"), vtype_to_qstr(vtype_index)); } switch (vtype_base) { case VTYPE_PTR8: { // pointer to 8-bit memory // TODO optimise to use thumb ldrb r1, [r2, r3] ASM_ADD_REG_REG(emit->as, REG_ARG_1, reg_index); // add index to base ASM_LOAD8_REG_REG(emit->as, REG_RET, REG_ARG_1); // store value to (base+index) break; } case VTYPE_PTR16: { // pointer to 16-bit memory ASM_ADD_REG_REG(emit->as, REG_ARG_1, reg_index); // add index to base ASM_ADD_REG_REG(emit->as, REG_ARG_1, reg_index); // add index to base ASM_LOAD16_REG_REG(emit->as, REG_RET, REG_ARG_1); // load from (base+2*index) break; } case VTYPE_PTR32: { // pointer to word-size memory ASM_ADD_REG_REG(emit->as, REG_ARG_1, reg_index); // add index to base ASM_ADD_REG_REG(emit->as, REG_ARG_1, reg_index); // add index to base ASM_ADD_REG_REG(emit->as, REG_ARG_1, reg_index); // add index to base ASM_ADD_REG_REG(emit->as, REG_ARG_1, reg_index); // add index to base ASM_LOAD32_REG_REG(emit->as, REG_RET, REG_ARG_1); // load from (base+4*index) break; } default: EMIT_NATIVE_VIPER_TYPE_ERROR(emit, MP_ERROR_TEXT("can't load from '%q'"), vtype_to_qstr(vtype_base)); } } emit_post_push_reg(emit, VTYPE_INT, REG_RET); } } STATIC void emit_native_store_fast(emit_t *emit, qstr qst, mp_uint_t local_num) { vtype_kind_t vtype; if (local_num < MAX_REGS_FOR_LOCAL_VARS && CAN_USE_REGS_FOR_LOCALS(emit)) { emit_pre_pop_reg(emit, &vtype, reg_local_table[local_num]); } else { emit_pre_pop_reg(emit, &vtype, REG_TEMP0); emit_native_mov_state_reg(emit, LOCAL_IDX_LOCAL_VAR(emit, local_num), REG_TEMP0); } emit_post(emit); // check types if (emit->local_vtype[local_num] == VTYPE_UNBOUND) { // first time this local is assigned, so give it a type of the object stored in it emit->local_vtype[local_num] = vtype; } else if (emit->local_vtype[local_num] != vtype) { // type of local is not the same as object stored in it EMIT_NATIVE_VIPER_TYPE_ERROR(emit, MP_ERROR_TEXT("local '%q' has type '%q' but source is '%q'"), qst, vtype_to_qstr(emit->local_vtype[local_num]), vtype_to_qstr(vtype)); } } STATIC void emit_native_store_deref(emit_t *emit, qstr qst, mp_uint_t local_num) { DEBUG_printf("store_deref(%s, " UINT_FMT ")\n", qstr_str(qst), local_num); need_reg_single(emit, REG_TEMP0, 0); need_reg_single(emit, REG_TEMP1, 0); emit_native_load_fast(emit, qst, local_num); vtype_kind_t vtype; int reg_base = REG_TEMP0; emit_pre_pop_reg_flexible(emit, &vtype, ®_base, -1, -1); int reg_src = REG_TEMP1; emit_pre_pop_reg_flexible(emit, &vtype, ®_src, reg_base, reg_base); ASM_STORE_REG_REG_OFFSET(emit->as, reg_src, reg_base, 1); emit_post(emit); } STATIC void emit_native_store_local(emit_t *emit, qstr qst, mp_uint_t local_num, int kind) { if (kind == MP_EMIT_IDOP_LOCAL_FAST) { emit_native_store_fast(emit, qst, local_num); } else { emit_native_store_deref(emit, qst, local_num); } } STATIC void emit_native_store_global(emit_t *emit, qstr qst, int kind) { MP_STATIC_ASSERT(MP_F_STORE_NAME + MP_EMIT_IDOP_GLOBAL_NAME == MP_F_STORE_NAME); MP_STATIC_ASSERT(MP_F_STORE_NAME + MP_EMIT_IDOP_GLOBAL_GLOBAL == MP_F_STORE_GLOBAL); if (kind == MP_EMIT_IDOP_GLOBAL_NAME) { // mp_store_name, but needs conversion of object (maybe have mp_viper_store_name(obj, type)) vtype_kind_t vtype; emit_pre_pop_reg(emit, &vtype, REG_ARG_2); assert(vtype == VTYPE_PYOBJ); } else { vtype_kind_t vtype = peek_vtype(emit, 0); if (vtype == VTYPE_PYOBJ) { emit_pre_pop_reg(emit, &vtype, REG_ARG_2); } else { emit_pre_pop_reg(emit, &vtype, REG_ARG_1); emit_call_with_imm_arg(emit, MP_F_CONVERT_NATIVE_TO_OBJ, vtype, REG_ARG_2); // arg2 = type ASM_MOV_REG_REG(emit->as, REG_ARG_2, REG_RET); } } emit_call_with_qstr_arg(emit, MP_F_STORE_NAME + kind, qst, REG_ARG_1); // arg1 = name emit_post(emit); } STATIC void emit_native_store_attr(emit_t *emit, qstr qst) { vtype_kind_t vtype_base; vtype_kind_t vtype_val = peek_vtype(emit, 1); if (vtype_val == VTYPE_PYOBJ) { emit_pre_pop_reg_reg(emit, &vtype_base, REG_ARG_1, &vtype_val, REG_ARG_3); // arg1 = base, arg3 = value } else { emit_access_stack(emit, 2, &vtype_val, REG_ARG_1); // arg1 = value emit_call_with_imm_arg(emit, MP_F_CONVERT_NATIVE_TO_OBJ, vtype_val, REG_ARG_2); // arg2 = type ASM_MOV_REG_REG(emit->as, REG_ARG_3, REG_RET); // arg3 = value (converted) emit_pre_pop_reg(emit, &vtype_base, REG_ARG_1); // arg1 = base adjust_stack(emit, -1); // pop value } assert(vtype_base == VTYPE_PYOBJ); emit_call_with_qstr_arg(emit, MP_F_STORE_ATTR, qst, REG_ARG_2); // arg2 = attribute name emit_post(emit); } STATIC void emit_native_store_subscr(emit_t *emit) { DEBUG_printf("store_subscr\n"); // need to compile: base[index] = value // pop: index, base, value // optimise case where index is an immediate vtype_kind_t vtype_base = peek_vtype(emit, 1); if (vtype_base == VTYPE_PYOBJ) { // standard Python subscr vtype_kind_t vtype_index = peek_vtype(emit, 0); vtype_kind_t vtype_value = peek_vtype(emit, 2); if (vtype_index != VTYPE_PYOBJ || vtype_value != VTYPE_PYOBJ) { // need to implicitly convert non-objects to objects // TODO do this properly emit_get_stack_pointer_to_reg_for_pop(emit, REG_ARG_1, 3); adjust_stack(emit, 3); } emit_pre_pop_reg_reg_reg(emit, &vtype_index, REG_ARG_2, &vtype_base, REG_ARG_1, &vtype_value, REG_ARG_3); emit_call(emit, MP_F_OBJ_SUBSCR); } else { // viper store // TODO The different machine architectures have very different // capabilities and requirements for stores, so probably best to // write a completely separate store-optimiser for each one. stack_info_t *top = peek_stack(emit, 0); if (top->vtype == VTYPE_INT && top->kind == STACK_IMM) { // index is an immediate mp_int_t index_value = top->data.u_imm; emit_pre_pop_discard(emit); // discard index vtype_kind_t vtype_value; int reg_base = REG_ARG_1; int reg_index = REG_ARG_2; int reg_value = REG_ARG_3; emit_pre_pop_reg_flexible(emit, &vtype_base, ®_base, reg_index, reg_value); #if N_X64 || N_X86 // special case: x86 needs byte stores to be from lower 4 regs (REG_ARG_3 is EDX) emit_pre_pop_reg(emit, &vtype_value, reg_value); #else emit_pre_pop_reg_flexible(emit, &vtype_value, ®_value, reg_base, reg_index); #endif if (vtype_value != VTYPE_BOOL && vtype_value != VTYPE_INT && vtype_value != VTYPE_UINT) { EMIT_NATIVE_VIPER_TYPE_ERROR(emit, MP_ERROR_TEXT("can't store '%q'"), vtype_to_qstr(vtype_value)); } switch (vtype_base) { case VTYPE_PTR8: { // pointer to 8-bit memory // TODO optimise to use thumb strb r1, [r2, r3] if (index_value != 0) { // index is non-zero #if N_THUMB if (index_value > 0 && index_value < 32) { asm_thumb_strb_rlo_rlo_i5(emit->as, reg_value, reg_base, index_value); break; } #endif ASM_MOV_REG_IMM(emit->as, reg_index, index_value); #if N_ARM asm_arm_strb_reg_reg_reg(emit->as, reg_value, reg_base, reg_index); return; #endif ASM_ADD_REG_REG(emit->as, reg_index, reg_base); // add index to base reg_base = reg_index; } ASM_STORE8_REG_REG(emit->as, reg_value, reg_base); // store value to (base+index) break; } case VTYPE_PTR16: { // pointer to 16-bit memory if (index_value != 0) { // index is a non-zero immediate #if N_THUMB if (index_value > 0 && index_value < 32) { asm_thumb_strh_rlo_rlo_i5(emit->as, reg_value, reg_base, index_value); break; } #endif ASM_MOV_REG_IMM(emit->as, reg_index, index_value << 1); ASM_ADD_REG_REG(emit->as, reg_index, reg_base); // add 2*index to base reg_base = reg_index; } ASM_STORE16_REG_REG(emit->as, reg_value, reg_base); // store value to (base+2*index) break; } case VTYPE_PTR32: { // pointer to 32-bit memory if (index_value != 0) { // index is a non-zero immediate #if N_THUMB if (index_value > 0 && index_value < 32) { asm_thumb_str_rlo_rlo_i5(emit->as, reg_value, reg_base, index_value); break; } #endif #if N_ARM ASM_MOV_REG_IMM(emit->as, reg_index, index_value); asm_arm_str_reg_reg_reg(emit->as, reg_value, reg_base, reg_index); return; #endif ASM_MOV_REG_IMM(emit->as, reg_index, index_value << 2); ASM_ADD_REG_REG(emit->as, reg_index, reg_base); // add 4*index to base reg_base = reg_index; } ASM_STORE32_REG_REG(emit->as, reg_value, reg_base); // store value to (base+4*index) break; } default: EMIT_NATIVE_VIPER_TYPE_ERROR(emit, MP_ERROR_TEXT("can't store to '%q'"), vtype_to_qstr(vtype_base)); } } else { // index is not an immediate vtype_kind_t vtype_index, vtype_value; int reg_index = REG_ARG_2; int reg_value = REG_ARG_3; emit_pre_pop_reg_flexible(emit, &vtype_index, ®_index, REG_ARG_1, reg_value); emit_pre_pop_reg(emit, &vtype_base, REG_ARG_1); if (vtype_index != VTYPE_INT && vtype_index != VTYPE_UINT) { EMIT_NATIVE_VIPER_TYPE_ERROR(emit, MP_ERROR_TEXT("can't store with '%q' index"), vtype_to_qstr(vtype_index)); } #if N_X64 || N_X86 // special case: x86 needs byte stores to be from lower 4 regs (REG_ARG_3 is EDX) emit_pre_pop_reg(emit, &vtype_value, reg_value); #else emit_pre_pop_reg_flexible(emit, &vtype_value, ®_value, REG_ARG_1, reg_index); #endif if (vtype_value != VTYPE_BOOL && vtype_value != VTYPE_INT && vtype_value != VTYPE_UINT) { EMIT_NATIVE_VIPER_TYPE_ERROR(emit, MP_ERROR_TEXT("can't store '%q'"), vtype_to_qstr(vtype_value)); } switch (vtype_base) { case VTYPE_PTR8: { // pointer to 8-bit memory // TODO optimise to use thumb strb r1, [r2, r3] #if N_ARM asm_arm_strb_reg_reg_reg(emit->as, reg_value, REG_ARG_1, reg_index); break; #endif ASM_ADD_REG_REG(emit->as, REG_ARG_1, reg_index); // add index to base ASM_STORE8_REG_REG(emit->as, reg_value, REG_ARG_1); // store value to (base+index) break; } case VTYPE_PTR16: { // pointer to 16-bit memory #if N_ARM asm_arm_strh_reg_reg_reg(emit->as, reg_value, REG_ARG_1, reg_index); break; #endif ASM_ADD_REG_REG(emit->as, REG_ARG_1, reg_index); // add index to base ASM_ADD_REG_REG(emit->as, REG_ARG_1, reg_index); // add index to base ASM_STORE16_REG_REG(emit->as, reg_value, REG_ARG_1); // store value to (base+2*index) break; } case VTYPE_PTR32: { // pointer to 32-bit memory #if N_ARM asm_arm_str_reg_reg_reg(emit->as, reg_value, REG_ARG_1, reg_index); break; #endif ASM_ADD_REG_REG(emit->as, REG_ARG_1, reg_index); // add index to base ASM_ADD_REG_REG(emit->as, REG_ARG_1, reg_index); // add index to base ASM_ADD_REG_REG(emit->as, REG_ARG_1, reg_index); // add index to base ASM_ADD_REG_REG(emit->as, REG_ARG_1, reg_index); // add index to base ASM_STORE32_REG_REG(emit->as, reg_value, REG_ARG_1); // store value to (base+4*index) break; } default: EMIT_NATIVE_VIPER_TYPE_ERROR(emit, MP_ERROR_TEXT("can't store to '%q'"), vtype_to_qstr(vtype_base)); } } } } STATIC void emit_native_delete_local(emit_t *emit, qstr qst, mp_uint_t local_num, int kind) { if (kind == MP_EMIT_IDOP_LOCAL_FAST) { // TODO: This is not compliant implementation. We could use MP_OBJ_SENTINEL // to mark deleted vars but then every var would need to be checked on // each access. Very inefficient, so just set value to None to enable GC. emit_native_load_const_tok(emit, MP_TOKEN_KW_NONE); emit_native_store_fast(emit, qst, local_num); } else { // TODO implement me! } } STATIC void emit_native_delete_global(emit_t *emit, qstr qst, int kind) { MP_STATIC_ASSERT(MP_F_DELETE_NAME + MP_EMIT_IDOP_GLOBAL_NAME == MP_F_DELETE_NAME); MP_STATIC_ASSERT(MP_F_DELETE_NAME + MP_EMIT_IDOP_GLOBAL_GLOBAL == MP_F_DELETE_GLOBAL); emit_native_pre(emit); emit_call_with_qstr_arg(emit, MP_F_DELETE_NAME + kind, qst, REG_ARG_1); emit_post(emit); } STATIC void emit_native_delete_attr(emit_t *emit, qstr qst) { vtype_kind_t vtype_base; emit_pre_pop_reg(emit, &vtype_base, REG_ARG_1); // arg1 = base assert(vtype_base == VTYPE_PYOBJ); ASM_XOR_REG_REG(emit->as, REG_ARG_3, REG_ARG_3); // arg3 = value (null for delete) emit_call_with_qstr_arg(emit, MP_F_STORE_ATTR, qst, REG_ARG_2); // arg2 = attribute name emit_post(emit); } STATIC void emit_native_delete_subscr(emit_t *emit) { vtype_kind_t vtype_index, vtype_base; emit_pre_pop_reg_reg(emit, &vtype_index, REG_ARG_2, &vtype_base, REG_ARG_1); // index, base assert(vtype_index == VTYPE_PYOBJ); assert(vtype_base == VTYPE_PYOBJ); emit_call_with_imm_arg(emit, MP_F_OBJ_SUBSCR, (mp_uint_t)MP_OBJ_NULL, REG_ARG_3); } STATIC void emit_native_subscr(emit_t *emit, int kind) { if (kind == MP_EMIT_SUBSCR_LOAD) { emit_native_load_subscr(emit); } else if (kind == MP_EMIT_SUBSCR_STORE) { emit_native_store_subscr(emit); } else { emit_native_delete_subscr(emit); } } STATIC void emit_native_attr(emit_t *emit, qstr qst, int kind) { if (kind == MP_EMIT_ATTR_LOAD) { emit_native_load_attr(emit, qst); } else if (kind == MP_EMIT_ATTR_STORE) { emit_native_store_attr(emit, qst); } else { emit_native_delete_attr(emit, qst); } } STATIC void emit_native_dup_top(emit_t *emit) { DEBUG_printf("dup_top\n"); vtype_kind_t vtype; int reg = REG_TEMP0; emit_pre_pop_reg_flexible(emit, &vtype, ®, -1, -1); emit_post_push_reg_reg(emit, vtype, reg, vtype, reg); } STATIC void emit_native_dup_top_two(emit_t *emit) { vtype_kind_t vtype0, vtype1; emit_pre_pop_reg_reg(emit, &vtype0, REG_TEMP0, &vtype1, REG_TEMP1); emit_post_push_reg_reg_reg_reg(emit, vtype1, REG_TEMP1, vtype0, REG_TEMP0, vtype1, REG_TEMP1, vtype0, REG_TEMP0); } STATIC void emit_native_pop_top(emit_t *emit) { DEBUG_printf("pop_top\n"); emit_pre_pop_discard(emit); emit_post(emit); } STATIC void emit_native_rot_two(emit_t *emit) { DEBUG_printf("rot_two\n"); vtype_kind_t vtype0, vtype1; emit_pre_pop_reg_reg(emit, &vtype0, REG_TEMP0, &vtype1, REG_TEMP1); emit_post_push_reg_reg(emit, vtype0, REG_TEMP0, vtype1, REG_TEMP1); } STATIC void emit_native_rot_three(emit_t *emit) { DEBUG_printf("rot_three\n"); vtype_kind_t vtype0, vtype1, vtype2; emit_pre_pop_reg_reg_reg(emit, &vtype0, REG_TEMP0, &vtype1, REG_TEMP1, &vtype2, REG_TEMP2); emit_post_push_reg_reg_reg(emit, vtype0, REG_TEMP0, vtype2, REG_TEMP2, vtype1, REG_TEMP1); } STATIC void emit_native_jump(emit_t *emit, mp_uint_t label) { DEBUG_printf("jump(label=" UINT_FMT ")\n", label); emit_native_pre(emit); // need to commit stack because we are jumping elsewhere need_stack_settled(emit); ASM_JUMP(emit->as, label); emit_post(emit); mp_asm_base_suppress_code(&emit->as->base); } STATIC void emit_native_jump_helper(emit_t *emit, bool cond, mp_uint_t label, bool pop) { vtype_kind_t vtype = peek_vtype(emit, 0); if (vtype == VTYPE_PYOBJ) { emit_pre_pop_reg(emit, &vtype, REG_ARG_1); if (!pop) { adjust_stack(emit, 1); } emit_call(emit, MP_F_OBJ_IS_TRUE); } else { emit_pre_pop_reg(emit, &vtype, REG_RET); if (!pop) { adjust_stack(emit, 1); } if (!(vtype == VTYPE_BOOL || vtype == VTYPE_INT || vtype == VTYPE_UINT)) { EMIT_NATIVE_VIPER_TYPE_ERROR(emit, MP_ERROR_TEXT("can't implicitly convert '%q' to 'bool'"), vtype_to_qstr(vtype)); } } // For non-pop need to save the vtype so that emit_native_adjust_stack_size // can use it. This is a bit of a hack. if (!pop) { emit->saved_stack_vtype = vtype; } // need to commit stack because we may jump elsewhere need_stack_settled(emit); // Emit the jump if (cond) { ASM_JUMP_IF_REG_NONZERO(emit->as, REG_RET, label, vtype == VTYPE_PYOBJ); } else { ASM_JUMP_IF_REG_ZERO(emit->as, REG_RET, label, vtype == VTYPE_PYOBJ); } if (!pop) { adjust_stack(emit, -1); } emit_post(emit); } STATIC void emit_native_pop_jump_if(emit_t *emit, bool cond, mp_uint_t label) { DEBUG_printf("pop_jump_if(cond=%u, label=" UINT_FMT ")\n", cond, label); emit_native_jump_helper(emit, cond, label, true); } STATIC void emit_native_jump_if_or_pop(emit_t *emit, bool cond, mp_uint_t label) { DEBUG_printf("jump_if_or_pop(cond=%u, label=" UINT_FMT ")\n", cond, label); emit_native_jump_helper(emit, cond, label, false); } STATIC void emit_native_unwind_jump(emit_t *emit, mp_uint_t label, mp_uint_t except_depth) { if (except_depth > 0) { exc_stack_entry_t *first_finally = NULL; exc_stack_entry_t *prev_finally = NULL; exc_stack_entry_t *e = &emit->exc_stack[emit->exc_stack_size - 1]; for (; except_depth > 0; --except_depth, --e) { if (e->is_finally && e->is_active) { // Found an active finally handler if (first_finally == NULL) { first_finally = e; } if (prev_finally != NULL) { // Mark prev finally as needed to unwind a jump prev_finally->unwind_label = e->label; } prev_finally = e; } } if (prev_finally == NULL) { // No finally, handle the jump ourselves // First, restore the exception handler address for the jump if (e < emit->exc_stack) { ASM_XOR_REG_REG(emit->as, REG_RET, REG_RET); } else { ASM_MOV_REG_PCREL(emit->as, REG_RET, e->label); } ASM_MOV_LOCAL_REG(emit->as, LOCAL_IDX_EXC_HANDLER_PC(emit), REG_RET); } else { // Last finally should do our jump for us // Mark finally as needing to decide the type of jump prev_finally->unwind_label = UNWIND_LABEL_DO_FINAL_UNWIND; ASM_MOV_REG_PCREL(emit->as, REG_RET, label & ~MP_EMIT_BREAK_FROM_FOR); ASM_MOV_LOCAL_REG(emit->as, LOCAL_IDX_EXC_HANDLER_UNWIND(emit), REG_RET); // Cancel any active exception (see also emit_native_pop_except_jump) ASM_MOV_REG_IMM(emit->as, REG_RET, (mp_uint_t)MP_OBJ_NULL); ASM_MOV_LOCAL_REG(emit->as, LOCAL_IDX_EXC_VAL(emit), REG_RET); // Jump to the innermost active finally label = first_finally->label; } } emit_native_jump(emit, label & ~MP_EMIT_BREAK_FROM_FOR); } STATIC void emit_native_setup_with(emit_t *emit, mp_uint_t label) { // the context manager is on the top of the stack // stack: (..., ctx_mgr) // get __exit__ method vtype_kind_t vtype; emit_access_stack(emit, 1, &vtype, REG_ARG_1); // arg1 = ctx_mgr assert(vtype == VTYPE_PYOBJ); emit_get_stack_pointer_to_reg_for_push(emit, REG_ARG_3, 2); // arg3 = dest ptr emit_call_with_qstr_arg(emit, MP_F_LOAD_METHOD, MP_QSTR___exit__, REG_ARG_2); // stack: (..., ctx_mgr, __exit__, self) emit_pre_pop_reg(emit, &vtype, REG_ARG_3); // self emit_pre_pop_reg(emit, &vtype, REG_ARG_2); // __exit__ emit_pre_pop_reg(emit, &vtype, REG_ARG_1); // ctx_mgr emit_post_push_reg(emit, vtype, REG_ARG_2); // __exit__ emit_post_push_reg(emit, vtype, REG_ARG_3); // self // stack: (..., __exit__, self) // REG_ARG_1=ctx_mgr // get __enter__ method emit_get_stack_pointer_to_reg_for_push(emit, REG_ARG_3, 2); // arg3 = dest ptr emit_call_with_qstr_arg(emit, MP_F_LOAD_METHOD, MP_QSTR___enter__, REG_ARG_2); // arg2 = method name // stack: (..., __exit__, self, __enter__, self) // call __enter__ method emit_get_stack_pointer_to_reg_for_pop(emit, REG_ARG_3, 2); // pointer to items, including meth and self emit_call_with_2_imm_args(emit, MP_F_CALL_METHOD_N_KW, 0, REG_ARG_1, 0, REG_ARG_2); emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET); // push return value of __enter__ // stack: (..., __exit__, self, as_value) // need to commit stack because we may jump elsewhere need_stack_settled(emit); emit_native_push_exc_stack(emit, label, true); emit_native_dup_top(emit); // stack: (..., __exit__, self, as_value, as_value) } STATIC void emit_native_setup_block(emit_t *emit, mp_uint_t label, int kind) { if (kind == MP_EMIT_SETUP_BLOCK_WITH) { emit_native_setup_with(emit, label); } else { // Set up except and finally emit_native_pre(emit); need_stack_settled(emit); emit_native_push_exc_stack(emit, label, kind == MP_EMIT_SETUP_BLOCK_FINALLY); emit_post(emit); } } STATIC void emit_native_with_cleanup(emit_t *emit, mp_uint_t label) { // Note: 3 labels are reserved for this function, starting at *emit->label_slot // stack: (..., __exit__, self, as_value) emit_native_pre(emit); emit_native_leave_exc_stack(emit, false); adjust_stack(emit, -1); // stack: (..., __exit__, self) // Label for case where __exit__ is called from an unwind jump emit_native_label_assign(emit, *emit->label_slot + 2); // call __exit__ emit_post_push_imm(emit, VTYPE_PTR_NONE, 0); emit_post_push_imm(emit, VTYPE_PTR_NONE, 0); emit_post_push_imm(emit, VTYPE_PTR_NONE, 0); emit_get_stack_pointer_to_reg_for_pop(emit, REG_ARG_3, 5); emit_call_with_2_imm_args(emit, MP_F_CALL_METHOD_N_KW, 3, REG_ARG_1, 0, REG_ARG_2); // Replace exc with None and finish emit_native_jump(emit, *emit->label_slot); // nlr_catch // Don't use emit_native_label_assign because this isn't a real finally label mp_asm_base_label_assign(&emit->as->base, label); // Leave with's exception handler emit_native_leave_exc_stack(emit, true); // Adjust stack counter for: __exit__, self (implicitly discard as_value which is above self) emit_native_adjust_stack_size(emit, 2); // stack: (..., __exit__, self) ASM_MOV_REG_LOCAL(emit->as, REG_ARG_1, LOCAL_IDX_EXC_VAL(emit)); // get exc // Check if exc is MP_OBJ_NULL (i.e. zero) and jump to non-exc handler if it is ASM_JUMP_IF_REG_ZERO(emit->as, REG_ARG_1, *emit->label_slot + 2, false); ASM_LOAD_REG_REG_OFFSET(emit->as, REG_ARG_2, REG_ARG_1, 0); // get type(exc) emit_post_push_reg(emit, VTYPE_PYOBJ, REG_ARG_2); // push type(exc) emit_post_push_reg(emit, VTYPE_PYOBJ, REG_ARG_1); // push exc value emit_post_push_imm(emit, VTYPE_PTR_NONE, 0); // traceback info // Stack: (..., __exit__, self, type(exc), exc, traceback) // call __exit__ method emit_get_stack_pointer_to_reg_for_pop(emit, REG_ARG_3, 5); emit_call_with_2_imm_args(emit, MP_F_CALL_METHOD_N_KW, 3, REG_ARG_1, 0, REG_ARG_2); // Stack: (...) // If REG_RET is true then we need to replace exception with None (swallow exception) if (REG_ARG_1 != REG_RET) { ASM_MOV_REG_REG(emit->as, REG_ARG_1, REG_RET); } emit_call(emit, MP_F_OBJ_IS_TRUE); ASM_JUMP_IF_REG_ZERO(emit->as, REG_RET, *emit->label_slot + 1, true); // Replace exception with MP_OBJ_NULL. emit_native_label_assign(emit, *emit->label_slot); ASM_MOV_REG_IMM(emit->as, REG_TEMP0, (mp_uint_t)MP_OBJ_NULL); ASM_MOV_LOCAL_REG(emit->as, LOCAL_IDX_EXC_VAL(emit), REG_TEMP0); // end of with cleanup nlr_catch block emit_native_label_assign(emit, *emit->label_slot + 1); // Exception is in nlr_buf.ret_val slot } STATIC void emit_native_end_finally(emit_t *emit) { // logic: // exc = pop_stack // if exc == None: pass // else: raise exc // the check if exc is None is done in the MP_F_NATIVE_RAISE stub emit_native_pre(emit); ASM_MOV_REG_LOCAL(emit->as, REG_ARG_1, LOCAL_IDX_EXC_VAL(emit)); emit_call(emit, MP_F_NATIVE_RAISE); // Get state for this finally and see if we need to unwind exc_stack_entry_t *e = emit_native_pop_exc_stack(emit); if (e->unwind_label != UNWIND_LABEL_UNUSED) { ASM_MOV_REG_LOCAL(emit->as, REG_RET, LOCAL_IDX_EXC_HANDLER_UNWIND(emit)); ASM_JUMP_IF_REG_ZERO(emit->as, REG_RET, *emit->label_slot, false); if (e->unwind_label == UNWIND_LABEL_DO_FINAL_UNWIND) { ASM_JUMP_REG(emit->as, REG_RET); } else { emit_native_jump(emit, e->unwind_label); } emit_native_label_assign(emit, *emit->label_slot); } emit_post(emit); } STATIC void emit_native_get_iter(emit_t *emit, bool use_stack) { // perhaps the difficult one, as we want to rewrite for loops using native code // in cases where we iterate over a Python object, can we use normal runtime calls? vtype_kind_t vtype; emit_pre_pop_reg(emit, &vtype, REG_ARG_1); assert(vtype == VTYPE_PYOBJ); if (use_stack) { emit_get_stack_pointer_to_reg_for_push(emit, REG_ARG_2, MP_OBJ_ITER_BUF_NSLOTS); emit_call(emit, MP_F_NATIVE_GETITER); } else { // mp_getiter will allocate the iter_buf on the heap ASM_MOV_REG_IMM(emit->as, REG_ARG_2, 0); emit_call(emit, MP_F_NATIVE_GETITER); emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET); } } STATIC void emit_native_for_iter(emit_t *emit, mp_uint_t label) { emit_native_pre(emit); emit_get_stack_pointer_to_reg_for_pop(emit, REG_ARG_1, MP_OBJ_ITER_BUF_NSLOTS); adjust_stack(emit, MP_OBJ_ITER_BUF_NSLOTS); emit_call(emit, MP_F_NATIVE_ITERNEXT); #if MICROPY_DEBUG_MP_OBJ_SENTINELS ASM_MOV_REG_IMM(emit->as, REG_TEMP1, (mp_uint_t)MP_OBJ_STOP_ITERATION); ASM_JUMP_IF_REG_EQ(emit->as, REG_RET, REG_TEMP1, label); #else MP_STATIC_ASSERT(MP_OBJ_STOP_ITERATION == 0); ASM_JUMP_IF_REG_ZERO(emit->as, REG_RET, label, false); #endif emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET); } STATIC void emit_native_for_iter_end(emit_t *emit) { // adjust stack counter (we get here from for_iter ending, which popped the value for us) emit_native_pre(emit); adjust_stack(emit, -MP_OBJ_ITER_BUF_NSLOTS); emit_post(emit); } STATIC void emit_native_pop_except_jump(emit_t *emit, mp_uint_t label, bool within_exc_handler) { if (within_exc_handler) { // Cancel any active exception so subsequent handlers don't see it ASM_MOV_REG_IMM(emit->as, REG_TEMP0, (mp_uint_t)MP_OBJ_NULL); ASM_MOV_LOCAL_REG(emit->as, LOCAL_IDX_EXC_VAL(emit), REG_TEMP0); } else { emit_native_leave_exc_stack(emit, false); } emit_native_jump(emit, label); } STATIC void emit_native_unary_op(emit_t *emit, mp_unary_op_t op) { vtype_kind_t vtype; emit_pre_pop_reg(emit, &vtype, REG_ARG_2); if (vtype == VTYPE_PYOBJ) { emit_call_with_imm_arg(emit, MP_F_UNARY_OP, op, REG_ARG_1); emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET); } else { adjust_stack(emit, 1); EMIT_NATIVE_VIPER_TYPE_ERROR(emit, MP_ERROR_TEXT("unary op %q not implemented"), mp_unary_op_method_name[op]); } } STATIC void emit_native_binary_op(emit_t *emit, mp_binary_op_t op) { DEBUG_printf("binary_op(" UINT_FMT ")\n", op); vtype_kind_t vtype_lhs = peek_vtype(emit, 1); vtype_kind_t vtype_rhs = peek_vtype(emit, 0); if ((vtype_lhs == VTYPE_INT || vtype_lhs == VTYPE_UINT) && (vtype_rhs == VTYPE_INT || vtype_rhs == VTYPE_UINT)) { // for integers, inplace and normal ops are equivalent, so use just normal ops if (MP_BINARY_OP_INPLACE_OR <= op && op <= MP_BINARY_OP_INPLACE_POWER) { op += MP_BINARY_OP_OR - MP_BINARY_OP_INPLACE_OR; } #if N_X64 || N_X86 // special cases for x86 and shifting if (op == MP_BINARY_OP_LSHIFT || op == MP_BINARY_OP_RSHIFT) { #if N_X64 emit_pre_pop_reg_reg(emit, &vtype_rhs, ASM_X64_REG_RCX, &vtype_lhs, REG_RET); #else emit_pre_pop_reg_reg(emit, &vtype_rhs, ASM_X86_REG_ECX, &vtype_lhs, REG_RET); #endif if (op == MP_BINARY_OP_LSHIFT) { ASM_LSL_REG(emit->as, REG_RET); } else { if (vtype_lhs == VTYPE_UINT) { ASM_LSR_REG(emit->as, REG_RET); } else { ASM_ASR_REG(emit->as, REG_RET); } } emit_post_push_reg(emit, vtype_lhs, REG_RET); return; } #endif // special cases for floor-divide and module because we dispatch to helper functions if (op == MP_BINARY_OP_FLOOR_DIVIDE || op == MP_BINARY_OP_MODULO) { emit_pre_pop_reg_reg(emit, &vtype_rhs, REG_ARG_2, &vtype_lhs, REG_ARG_1); if (vtype_lhs != VTYPE_INT) { EMIT_NATIVE_VIPER_TYPE_ERROR(emit, MP_ERROR_TEXT("div/mod not implemented for uint"), mp_binary_op_method_name[op]); } if (op == MP_BINARY_OP_FLOOR_DIVIDE) { emit_call(emit, MP_F_SMALL_INT_FLOOR_DIVIDE); } else { emit_call(emit, MP_F_SMALL_INT_MODULO); } emit_post_push_reg(emit, VTYPE_INT, REG_RET); return; } int reg_rhs = REG_ARG_3; emit_pre_pop_reg_flexible(emit, &vtype_rhs, ®_rhs, REG_RET, REG_ARG_2); emit_pre_pop_reg(emit, &vtype_lhs, REG_ARG_2); #if !(N_X64 || N_X86) if (op == MP_BINARY_OP_LSHIFT || op == MP_BINARY_OP_RSHIFT) { if (op == MP_BINARY_OP_LSHIFT) { ASM_LSL_REG_REG(emit->as, REG_ARG_2, reg_rhs); } else { if (vtype_lhs == VTYPE_UINT) { ASM_LSR_REG_REG(emit->as, REG_ARG_2, reg_rhs); } else { ASM_ASR_REG_REG(emit->as, REG_ARG_2, reg_rhs); } } emit_post_push_reg(emit, vtype_lhs, REG_ARG_2); return; } #endif if (op == MP_BINARY_OP_OR) { ASM_OR_REG_REG(emit->as, REG_ARG_2, reg_rhs); emit_post_push_reg(emit, vtype_lhs, REG_ARG_2); } else if (op == MP_BINARY_OP_XOR) { ASM_XOR_REG_REG(emit->as, REG_ARG_2, reg_rhs); emit_post_push_reg(emit, vtype_lhs, REG_ARG_2); } else if (op == MP_BINARY_OP_AND) { ASM_AND_REG_REG(emit->as, REG_ARG_2, reg_rhs); emit_post_push_reg(emit, vtype_lhs, REG_ARG_2); } else if (op == MP_BINARY_OP_ADD) { ASM_ADD_REG_REG(emit->as, REG_ARG_2, reg_rhs); emit_post_push_reg(emit, vtype_lhs, REG_ARG_2); } else if (op == MP_BINARY_OP_SUBTRACT) { ASM_SUB_REG_REG(emit->as, REG_ARG_2, reg_rhs); emit_post_push_reg(emit, vtype_lhs, REG_ARG_2); } else if (op == MP_BINARY_OP_MULTIPLY) { ASM_MUL_REG_REG(emit->as, REG_ARG_2, reg_rhs); emit_post_push_reg(emit, vtype_lhs, REG_ARG_2); } else if (op == MP_BINARY_OP_LESS || op == MP_BINARY_OP_MORE || op == MP_BINARY_OP_EQUAL || op == MP_BINARY_OP_LESS_EQUAL || op == MP_BINARY_OP_MORE_EQUAL || op == MP_BINARY_OP_NOT_EQUAL) { // comparison ops if (vtype_lhs != vtype_rhs) { EMIT_NATIVE_VIPER_TYPE_ERROR(emit, MP_ERROR_TEXT("comparison of int and uint")); } size_t op_idx = op - MP_BINARY_OP_LESS + (vtype_lhs == VTYPE_UINT ? 0 : 6); need_reg_single(emit, REG_RET, 0); #if N_X64 asm_x64_xor_r64_r64(emit->as, REG_RET, REG_RET); asm_x64_cmp_r64_with_r64(emit->as, reg_rhs, REG_ARG_2); static byte ops[6 + 6] = { // unsigned ASM_X64_CC_JB, ASM_X64_CC_JA, ASM_X64_CC_JE, ASM_X64_CC_JBE, ASM_X64_CC_JAE, ASM_X64_CC_JNE, // signed ASM_X64_CC_JL, ASM_X64_CC_JG, ASM_X64_CC_JE, ASM_X64_CC_JLE, ASM_X64_CC_JGE, ASM_X64_CC_JNE, }; asm_x64_setcc_r8(emit->as, ops[op_idx], REG_RET); #elif N_X86 asm_x86_xor_r32_r32(emit->as, REG_RET, REG_RET); asm_x86_cmp_r32_with_r32(emit->as, reg_rhs, REG_ARG_2); static byte ops[6 + 6] = { // unsigned ASM_X86_CC_JB, ASM_X86_CC_JA, ASM_X86_CC_JE, ASM_X86_CC_JBE, ASM_X86_CC_JAE, ASM_X86_CC_JNE, // signed ASM_X86_CC_JL, ASM_X86_CC_JG, ASM_X86_CC_JE, ASM_X86_CC_JLE, ASM_X86_CC_JGE, ASM_X86_CC_JNE, }; asm_x86_setcc_r8(emit->as, ops[op_idx], REG_RET); #elif N_THUMB asm_thumb_cmp_rlo_rlo(emit->as, REG_ARG_2, reg_rhs); if (asm_thumb_allow_armv7m(emit->as)) { static uint16_t ops[6 + 6] = { // unsigned ASM_THUMB_OP_ITE_CC, ASM_THUMB_OP_ITE_HI, ASM_THUMB_OP_ITE_EQ, ASM_THUMB_OP_ITE_LS, ASM_THUMB_OP_ITE_CS, ASM_THUMB_OP_ITE_NE, // signed ASM_THUMB_OP_ITE_LT, ASM_THUMB_OP_ITE_GT, ASM_THUMB_OP_ITE_EQ, ASM_THUMB_OP_ITE_LE, ASM_THUMB_OP_ITE_GE, ASM_THUMB_OP_ITE_NE, }; asm_thumb_op16(emit->as, ops[op_idx]); asm_thumb_mov_rlo_i8(emit->as, REG_RET, 1); asm_thumb_mov_rlo_i8(emit->as, REG_RET, 0); } else { static uint16_t ops[6 + 6] = { // unsigned ASM_THUMB_CC_CC, ASM_THUMB_CC_HI, ASM_THUMB_CC_EQ, ASM_THUMB_CC_LS, ASM_THUMB_CC_CS, ASM_THUMB_CC_NE, // signed ASM_THUMB_CC_LT, ASM_THUMB_CC_GT, ASM_THUMB_CC_EQ, ASM_THUMB_CC_LE, ASM_THUMB_CC_GE, ASM_THUMB_CC_NE, }; asm_thumb_bcc_rel9(emit->as, ops[op_idx], 6); asm_thumb_mov_rlo_i8(emit->as, REG_RET, 0); asm_thumb_b_rel12(emit->as, 4); asm_thumb_mov_rlo_i8(emit->as, REG_RET, 1); } #elif N_ARM asm_arm_cmp_reg_reg(emit->as, REG_ARG_2, reg_rhs); static uint ccs[6 + 6] = { // unsigned ASM_ARM_CC_CC, ASM_ARM_CC_HI, ASM_ARM_CC_EQ, ASM_ARM_CC_LS, ASM_ARM_CC_CS, ASM_ARM_CC_NE, // signed ASM_ARM_CC_LT, ASM_ARM_CC_GT, ASM_ARM_CC_EQ, ASM_ARM_CC_LE, ASM_ARM_CC_GE, ASM_ARM_CC_NE, }; asm_arm_setcc_reg(emit->as, REG_RET, ccs[op_idx]); #elif N_XTENSA || N_XTENSAWIN static uint8_t ccs[6 + 6] = { // unsigned ASM_XTENSA_CC_LTU, 0x80 | ASM_XTENSA_CC_LTU, // for GTU we'll swap args ASM_XTENSA_CC_EQ, 0x80 | ASM_XTENSA_CC_GEU, // for LEU we'll swap args ASM_XTENSA_CC_GEU, ASM_XTENSA_CC_NE, // signed ASM_XTENSA_CC_LT, 0x80 | ASM_XTENSA_CC_LT, // for GT we'll swap args ASM_XTENSA_CC_EQ, 0x80 | ASM_XTENSA_CC_GE, // for LE we'll swap args ASM_XTENSA_CC_GE, ASM_XTENSA_CC_NE, }; uint8_t cc = ccs[op_idx]; if ((cc & 0x80) == 0) { asm_xtensa_setcc_reg_reg_reg(emit->as, cc, REG_RET, REG_ARG_2, reg_rhs); } else { asm_xtensa_setcc_reg_reg_reg(emit->as, cc & ~0x80, REG_RET, reg_rhs, REG_ARG_2); } #else #error not implemented #endif emit_post_push_reg(emit, VTYPE_BOOL, REG_RET); } else { // TODO other ops not yet implemented adjust_stack(emit, 1); EMIT_NATIVE_VIPER_TYPE_ERROR(emit, MP_ERROR_TEXT("binary op %q not implemented"), mp_binary_op_method_name[op]); } } else if (vtype_lhs == VTYPE_PYOBJ && vtype_rhs == VTYPE_PYOBJ) { emit_pre_pop_reg_reg(emit, &vtype_rhs, REG_ARG_3, &vtype_lhs, REG_ARG_2); bool invert = false; if (op == MP_BINARY_OP_NOT_IN) { invert = true; op = MP_BINARY_OP_IN; } else if (op == MP_BINARY_OP_IS_NOT) { invert = true; op = MP_BINARY_OP_IS; } emit_call_with_imm_arg(emit, MP_F_BINARY_OP, op, REG_ARG_1); if (invert) { ASM_MOV_REG_REG(emit->as, REG_ARG_2, REG_RET); emit_call_with_imm_arg(emit, MP_F_UNARY_OP, MP_UNARY_OP_NOT, REG_ARG_1); } emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET); } else { adjust_stack(emit, -1); EMIT_NATIVE_VIPER_TYPE_ERROR(emit, MP_ERROR_TEXT("can't do binary op between '%q' and '%q'"), vtype_to_qstr(vtype_lhs), vtype_to_qstr(vtype_rhs)); } } #if MICROPY_PY_BUILTINS_SLICE STATIC void emit_native_build_slice(emit_t *emit, mp_uint_t n_args); #endif STATIC void emit_native_build(emit_t *emit, mp_uint_t n_args, int kind) { // for viper: call runtime, with types of args // if wrapped in byte_array, or something, allocates memory and fills it MP_STATIC_ASSERT(MP_F_BUILD_TUPLE + MP_EMIT_BUILD_TUPLE == MP_F_BUILD_TUPLE); MP_STATIC_ASSERT(MP_F_BUILD_TUPLE + MP_EMIT_BUILD_LIST == MP_F_BUILD_LIST); MP_STATIC_ASSERT(MP_F_BUILD_TUPLE + MP_EMIT_BUILD_MAP == MP_F_BUILD_MAP); MP_STATIC_ASSERT(MP_F_BUILD_TUPLE + MP_EMIT_BUILD_SET == MP_F_BUILD_SET); #if MICROPY_PY_BUILTINS_SLICE if (kind == MP_EMIT_BUILD_SLICE) { emit_native_build_slice(emit, n_args); return; } #endif emit_native_pre(emit); if (kind == MP_EMIT_BUILD_TUPLE || kind == MP_EMIT_BUILD_LIST || kind == MP_EMIT_BUILD_SET) { emit_get_stack_pointer_to_reg_for_pop(emit, REG_ARG_2, n_args); // pointer to items } emit_call_with_imm_arg(emit, MP_F_BUILD_TUPLE + kind, n_args, REG_ARG_1); emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET); // new tuple/list/map/set } STATIC void emit_native_store_map(emit_t *emit) { vtype_kind_t vtype_key, vtype_value, vtype_map; emit_pre_pop_reg_reg_reg(emit, &vtype_key, REG_ARG_2, &vtype_value, REG_ARG_3, &vtype_map, REG_ARG_1); // key, value, map assert(vtype_key == VTYPE_PYOBJ); assert(vtype_value == VTYPE_PYOBJ); assert(vtype_map == VTYPE_PYOBJ); emit_call(emit, MP_F_STORE_MAP); emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET); // map } #if MICROPY_PY_BUILTINS_SLICE STATIC void emit_native_build_slice(emit_t *emit, mp_uint_t n_args) { DEBUG_printf("build_slice %d\n", n_args); if (n_args == 2) { vtype_kind_t vtype_start, vtype_stop; emit_pre_pop_reg_reg(emit, &vtype_stop, REG_ARG_2, &vtype_start, REG_ARG_1); // arg1 = start, arg2 = stop assert(vtype_start == VTYPE_PYOBJ); assert(vtype_stop == VTYPE_PYOBJ); emit_native_mov_reg_const(emit, REG_ARG_3, MP_F_CONST_NONE_OBJ); // arg3 = step } else { assert(n_args == 3); vtype_kind_t vtype_start, vtype_stop, vtype_step; emit_pre_pop_reg_reg_reg(emit, &vtype_step, REG_ARG_3, &vtype_stop, REG_ARG_2, &vtype_start, REG_ARG_1); // arg1 = start, arg2 = stop, arg3 = step assert(vtype_start == VTYPE_PYOBJ); assert(vtype_stop == VTYPE_PYOBJ); assert(vtype_step == VTYPE_PYOBJ); } emit_call(emit, MP_F_NEW_SLICE); emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET); } #endif STATIC void emit_native_store_comp(emit_t *emit, scope_kind_t kind, mp_uint_t collection_index) { mp_fun_kind_t f; if (kind == SCOPE_LIST_COMP) { vtype_kind_t vtype_item; emit_pre_pop_reg(emit, &vtype_item, REG_ARG_2); assert(vtype_item == VTYPE_PYOBJ); f = MP_F_LIST_APPEND; #if MICROPY_PY_BUILTINS_SET } else if (kind == SCOPE_SET_COMP) { vtype_kind_t vtype_item; emit_pre_pop_reg(emit, &vtype_item, REG_ARG_2); assert(vtype_item == VTYPE_PYOBJ); f = MP_F_STORE_SET; #endif } else { // SCOPE_DICT_COMP vtype_kind_t vtype_key, vtype_value; emit_pre_pop_reg_reg(emit, &vtype_key, REG_ARG_2, &vtype_value, REG_ARG_3); assert(vtype_key == VTYPE_PYOBJ); assert(vtype_value == VTYPE_PYOBJ); f = MP_F_STORE_MAP; } vtype_kind_t vtype_collection; emit_access_stack(emit, collection_index, &vtype_collection, REG_ARG_1); assert(vtype_collection == VTYPE_PYOBJ); emit_call(emit, f); emit_post(emit); } STATIC void emit_native_unpack_sequence(emit_t *emit, mp_uint_t n_args) { DEBUG_printf("unpack_sequence %d\n", n_args); vtype_kind_t vtype_base; emit_pre_pop_reg(emit, &vtype_base, REG_ARG_1); // arg1 = seq assert(vtype_base == VTYPE_PYOBJ); emit_get_stack_pointer_to_reg_for_push(emit, REG_ARG_3, n_args); // arg3 = dest ptr emit_call_with_imm_arg(emit, MP_F_UNPACK_SEQUENCE, n_args, REG_ARG_2); // arg2 = n_args } STATIC void emit_native_unpack_ex(emit_t *emit, mp_uint_t n_left, mp_uint_t n_right) { DEBUG_printf("unpack_ex %d %d\n", n_left, n_right); vtype_kind_t vtype_base; emit_pre_pop_reg(emit, &vtype_base, REG_ARG_1); // arg1 = seq assert(vtype_base == VTYPE_PYOBJ); emit_get_stack_pointer_to_reg_for_push(emit, REG_ARG_3, n_left + n_right + 1); // arg3 = dest ptr emit_call_with_imm_arg(emit, MP_F_UNPACK_EX, n_left | (n_right << 8), REG_ARG_2); // arg2 = n_left + n_right } STATIC void emit_native_make_function(emit_t *emit, scope_t *scope, mp_uint_t n_pos_defaults, mp_uint_t n_kw_defaults) { // call runtime, with type info for args, or don't support dict/default params, or only support Python objects for them emit_native_pre(emit); emit_native_mov_reg_state(emit, REG_ARG_2, LOCAL_IDX_FUN_OBJ(emit)); ASM_LOAD_REG_REG_OFFSET(emit->as, REG_ARG_2, REG_ARG_2, OFFSETOF_OBJ_FUN_BC_CONTEXT); if (n_pos_defaults == 0 && n_kw_defaults == 0) { need_reg_all(emit); ASM_MOV_REG_IMM(emit->as, REG_ARG_3, 0); } else { emit_get_stack_pointer_to_reg_for_pop(emit, REG_ARG_3, 2); need_reg_all(emit); } emit_load_reg_with_child(emit, REG_ARG_1, scope->raw_code); ASM_CALL_IND(emit->as, MP_F_MAKE_FUNCTION_FROM_RAW_CODE); emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET); } STATIC void emit_native_make_closure(emit_t *emit, scope_t *scope, mp_uint_t n_closed_over, mp_uint_t n_pos_defaults, mp_uint_t n_kw_defaults) { // make function emit_native_pre(emit); emit_native_mov_reg_state(emit, REG_ARG_2, LOCAL_IDX_FUN_OBJ(emit)); ASM_LOAD_REG_REG_OFFSET(emit->as, REG_ARG_2, REG_ARG_2, OFFSETOF_OBJ_FUN_BC_CONTEXT); if (n_pos_defaults == 0 && n_kw_defaults == 0) { need_reg_all(emit); ASM_MOV_REG_IMM(emit->as, REG_ARG_3, 0); } else { emit_get_stack_pointer_to_reg_for_pop(emit, REG_ARG_3, 2 + n_closed_over); adjust_stack(emit, 2 + n_closed_over); need_reg_all(emit); } emit_load_reg_with_child(emit, REG_ARG_1, scope->raw_code); ASM_CALL_IND(emit->as, MP_F_MAKE_FUNCTION_FROM_RAW_CODE); // make closure #if REG_ARG_1 != REG_RET ASM_MOV_REG_REG(emit->as, REG_ARG_1, REG_RET); #endif ASM_MOV_REG_IMM(emit->as, REG_ARG_2, n_closed_over); emit_get_stack_pointer_to_reg_for_pop(emit, REG_ARG_3, n_closed_over); if (n_pos_defaults != 0 || n_kw_defaults != 0) { adjust_stack(emit, -2); } ASM_CALL_IND(emit->as, MP_F_NEW_CLOSURE); emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET); } STATIC void emit_native_call_function(emit_t *emit, mp_uint_t n_positional, mp_uint_t n_keyword, mp_uint_t star_flags) { DEBUG_printf("call_function(n_pos=" UINT_FMT ", n_kw=" UINT_FMT ", star_flags=" UINT_FMT ")\n", n_positional, n_keyword, star_flags); // TODO: in viper mode, call special runtime routine with type info for args, // and wanted type info for return, to remove need for boxing/unboxing emit_native_pre(emit); vtype_kind_t vtype_fun = peek_vtype(emit, n_positional + 2 * n_keyword); if (vtype_fun == VTYPE_BUILTIN_CAST) { // casting operator assert(n_positional == 1 && n_keyword == 0); assert(!star_flags); DEBUG_printf(" cast to %d\n", vtype_fun); vtype_kind_t vtype_cast = peek_stack(emit, 1)->data.u_imm; switch (peek_vtype(emit, 0)) { case VTYPE_PYOBJ: { vtype_kind_t vtype; emit_pre_pop_reg(emit, &vtype, REG_ARG_1); emit_pre_pop_discard(emit); emit_call_with_imm_arg(emit, MP_F_CONVERT_OBJ_TO_NATIVE, vtype_cast, REG_ARG_2); // arg2 = type emit_post_push_reg(emit, vtype_cast, REG_RET); break; } case VTYPE_BOOL: case VTYPE_INT: case VTYPE_UINT: case VTYPE_PTR: case VTYPE_PTR8: case VTYPE_PTR16: case VTYPE_PTR32: case VTYPE_PTR_NONE: emit_fold_stack_top(emit, REG_ARG_1); emit_post_top_set_vtype(emit, vtype_cast); break; default: // this can happen when casting a cast: int(int) mp_raise_NotImplementedError(MP_ERROR_TEXT("casting")); } } else { assert(vtype_fun == VTYPE_PYOBJ); if (star_flags) { emit_get_stack_pointer_to_reg_for_pop(emit, REG_ARG_3, n_positional + 2 * n_keyword + 2); // pointer to args emit_call_with_2_imm_args(emit, MP_F_CALL_METHOD_N_KW_VAR, 0, REG_ARG_1, n_positional | (n_keyword << 8), REG_ARG_2); emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET); } else { if (n_positional != 0 || n_keyword != 0) { emit_get_stack_pointer_to_reg_for_pop(emit, REG_ARG_3, n_positional + 2 * n_keyword); // pointer to args } emit_pre_pop_reg(emit, &vtype_fun, REG_ARG_1); // the function emit_call_with_imm_arg(emit, MP_F_NATIVE_CALL_FUNCTION_N_KW, n_positional | (n_keyword << 8), REG_ARG_2); emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET); } } } STATIC void emit_native_call_method(emit_t *emit, mp_uint_t n_positional, mp_uint_t n_keyword, mp_uint_t star_flags) { if (star_flags) { emit_get_stack_pointer_to_reg_for_pop(emit, REG_ARG_3, n_positional + 2 * n_keyword + 3); // pointer to args emit_call_with_2_imm_args(emit, MP_F_CALL_METHOD_N_KW_VAR, 1, REG_ARG_1, n_positional | (n_keyword << 8), REG_ARG_2); emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET); } else { emit_native_pre(emit); emit_get_stack_pointer_to_reg_for_pop(emit, REG_ARG_3, 2 + n_positional + 2 * n_keyword); // pointer to items, including meth and self emit_call_with_2_imm_args(emit, MP_F_CALL_METHOD_N_KW, n_positional, REG_ARG_1, n_keyword, REG_ARG_2); emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET); } } STATIC void emit_native_return_value(emit_t *emit) { DEBUG_printf("return_value\n"); if (emit->scope->scope_flags & MP_SCOPE_FLAG_GENERATOR) { // Save pointer to current stack position for caller to access return value emit_get_stack_pointer_to_reg_for_pop(emit, REG_TEMP0, 1); emit_native_mov_state_reg(emit, OFFSETOF_CODE_STATE_SP, REG_TEMP0); // Put return type in return value slot ASM_MOV_REG_IMM(emit->as, REG_TEMP0, MP_VM_RETURN_NORMAL); ASM_MOV_LOCAL_REG(emit->as, LOCAL_IDX_RET_VAL(emit), REG_TEMP0); // Do the unwinding jump to get to the return handler emit_native_unwind_jump(emit, emit->exit_label, emit->exc_stack_size); return; } if (emit->do_viper_types) { vtype_kind_t return_vtype = emit->scope->scope_flags >> MP_SCOPE_FLAG_VIPERRET_POS; if (peek_vtype(emit, 0) == VTYPE_PTR_NONE) { emit_pre_pop_discard(emit); if (return_vtype == VTYPE_PYOBJ) { emit_native_mov_reg_const(emit, REG_PARENT_RET, MP_F_CONST_NONE_OBJ); } else { ASM_MOV_REG_IMM(emit->as, REG_ARG_1, 0); } } else { vtype_kind_t vtype; emit_pre_pop_reg(emit, &vtype, return_vtype == VTYPE_PYOBJ ? REG_PARENT_RET : REG_ARG_1); if (vtype != return_vtype) { EMIT_NATIVE_VIPER_TYPE_ERROR(emit, MP_ERROR_TEXT("return expected '%q' but got '%q'"), vtype_to_qstr(return_vtype), vtype_to_qstr(vtype)); } } if (return_vtype != VTYPE_PYOBJ) { emit_call_with_imm_arg(emit, MP_F_CONVERT_NATIVE_TO_OBJ, return_vtype, REG_ARG_2); #if REG_RET != REG_PARENT_RET ASM_MOV_REG_REG(emit->as, REG_PARENT_RET, REG_RET); #endif } } else { vtype_kind_t vtype; emit_pre_pop_reg(emit, &vtype, REG_PARENT_RET); assert(vtype == VTYPE_PYOBJ); } if (NEED_GLOBAL_EXC_HANDLER(emit)) { // Save return value for the global exception handler to use ASM_MOV_LOCAL_REG(emit->as, LOCAL_IDX_RET_VAL(emit), REG_PARENT_RET); } emit_native_unwind_jump(emit, emit->exit_label, emit->exc_stack_size); } STATIC void emit_native_raise_varargs(emit_t *emit, mp_uint_t n_args) { (void)n_args; assert(n_args == 1); vtype_kind_t vtype_exc; emit_pre_pop_reg(emit, &vtype_exc, REG_ARG_1); // arg1 = object to raise if (vtype_exc != VTYPE_PYOBJ) { EMIT_NATIVE_VIPER_TYPE_ERROR(emit, MP_ERROR_TEXT("must raise an object")); } // TODO probably make this 1 call to the runtime (which could even call convert, native_raise(obj, type)) emit_call(emit, MP_F_NATIVE_RAISE); mp_asm_base_suppress_code(&emit->as->base); } STATIC void emit_native_yield(emit_t *emit, int kind) { // Note: 1 (yield) or 3 (yield from) labels are reserved for this function, starting at *emit->label_slot if (emit->do_viper_types) { mp_raise_NotImplementedError(MP_ERROR_TEXT("native yield")); } emit->scope->scope_flags |= MP_SCOPE_FLAG_GENERATOR; need_stack_settled(emit); if (kind == MP_EMIT_YIELD_FROM) { // Top of yield-from loop, conceptually implementing: // for item in generator: // yield item // Jump to start of loop emit_native_jump(emit, *emit->label_slot + 2); // Label for top of loop emit_native_label_assign(emit, *emit->label_slot + 1); } // Save pointer to current stack position for caller to access yielded value emit_get_stack_pointer_to_reg_for_pop(emit, REG_TEMP0, 1); emit_native_mov_state_reg(emit, OFFSETOF_CODE_STATE_SP, REG_TEMP0); // Put return type in return value slot ASM_MOV_REG_IMM(emit->as, REG_TEMP0, MP_VM_RETURN_YIELD); ASM_MOV_LOCAL_REG(emit->as, LOCAL_IDX_RET_VAL(emit), REG_TEMP0); // Save re-entry PC ASM_MOV_REG_PCREL(emit->as, REG_TEMP0, *emit->label_slot); emit_native_mov_state_reg(emit, LOCAL_IDX_GEN_PC(emit), REG_TEMP0); // Jump to exit handler ASM_JUMP(emit->as, emit->exit_label); // Label re-entry point mp_asm_base_label_assign(&emit->as->base, *emit->label_slot); // Re-open any active exception handler if (emit->exc_stack_size > 0) { // Find innermost active exception handler, to restore as current handler exc_stack_entry_t *e = &emit->exc_stack[emit->exc_stack_size - 1]; for (; e >= emit->exc_stack; --e) { if (e->is_active) { // Found active handler, get its PC ASM_MOV_REG_PCREL(emit->as, REG_RET, e->label); ASM_MOV_LOCAL_REG(emit->as, LOCAL_IDX_EXC_HANDLER_PC(emit), REG_RET); break; } } } emit_native_adjust_stack_size(emit, 1); // send_value if (kind == MP_EMIT_YIELD_VALUE) { // Check LOCAL_IDX_EXC_VAL for any injected value ASM_MOV_REG_LOCAL(emit->as, REG_ARG_1, LOCAL_IDX_EXC_VAL(emit)); emit_call(emit, MP_F_NATIVE_RAISE); } else { // Label loop entry emit_native_label_assign(emit, *emit->label_slot + 2); // Get the next item from the delegate generator vtype_kind_t vtype; emit_pre_pop_reg(emit, &vtype, REG_ARG_2); // send_value emit_access_stack(emit, 1, &vtype, REG_ARG_1); // generator ASM_MOV_REG_LOCAL(emit->as, REG_ARG_3, LOCAL_IDX_EXC_VAL(emit)); // throw_value emit_post_push_reg(emit, VTYPE_PYOBJ, REG_ARG_3); emit_get_stack_pointer_to_reg_for_pop(emit, REG_ARG_3, 1); // ret_value emit_call(emit, MP_F_NATIVE_YIELD_FROM); // If returned non-zero then generator continues ASM_JUMP_IF_REG_NONZERO(emit->as, REG_RET, *emit->label_slot + 1, true); // Pop exhausted gen, replace with ret_value emit_native_adjust_stack_size(emit, 1); // ret_value emit_fold_stack_top(emit, REG_ARG_1); } } STATIC void emit_native_start_except_handler(emit_t *emit) { // Protected block has finished so leave the current exception handler emit_native_leave_exc_stack(emit, true); // Get and push nlr_buf.ret_val ASM_MOV_REG_LOCAL(emit->as, REG_TEMP0, LOCAL_IDX_EXC_VAL(emit)); emit_post_push_reg(emit, VTYPE_PYOBJ, REG_TEMP0); } STATIC void emit_native_end_except_handler(emit_t *emit) { adjust_stack(emit, -1); // pop the exception (end_finally didn't use it) } const emit_method_table_t EXPORT_FUN(method_table) = { #if MICROPY_DYNAMIC_COMPILER EXPORT_FUN(new), EXPORT_FUN(free), #endif emit_native_start_pass, emit_native_end_pass, emit_native_adjust_stack_size, emit_native_set_source_line, { emit_native_load_local, emit_native_load_global, }, { emit_native_store_local, emit_native_store_global, }, { emit_native_delete_local, emit_native_delete_global, }, emit_native_label_assign, emit_native_import, emit_native_load_const_tok, emit_native_load_const_small_int, emit_native_load_const_str, emit_native_load_const_obj, emit_native_load_null, emit_native_load_method, emit_native_load_build_class, emit_native_subscr, emit_native_attr, emit_native_dup_top, emit_native_dup_top_two, emit_native_pop_top, emit_native_rot_two, emit_native_rot_three, emit_native_jump, emit_native_pop_jump_if, emit_native_jump_if_or_pop, emit_native_unwind_jump, emit_native_setup_block, emit_native_with_cleanup, emit_native_end_finally, emit_native_get_iter, emit_native_for_iter, emit_native_for_iter_end, emit_native_pop_except_jump, emit_native_unary_op, emit_native_binary_op, emit_native_build, emit_native_store_map, emit_native_store_comp, emit_native_unpack_sequence, emit_native_unpack_ex, emit_native_make_function, emit_native_make_closure, emit_native_call_function, emit_native_call_method, emit_native_return_value, emit_native_raise_varargs, emit_native_yield, emit_native_start_except_handler, emit_native_end_except_handler, }; #endif