/*
 * This file is part of the MicroPython project, http://micropython.org/
 *
 * The MIT License (MIT)
 *
 * Copyright (c) 2017 Scott Shawcroft for Adafruit Industries
 * Copyright (c) 2019 Lucian Copeland for Adafruit Industries
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */

#include <stdint.h>
#include <sys/time.h>
#include "supervisor/board.h"
#include "supervisor/port.h"
#include "supervisor/filesystem.h"
#include "supervisor/shared/reload.h"
#include "py/runtime.h"

#include "freertos/FreeRTOS.h"
#include "freertos/task.h"

#include "bindings/espidf/__init__.h"
#include "bindings/espnow/__init__.h"
#include "bindings/espulp/__init__.h"
#include "common-hal/microcontroller/Pin.h"
#include "common-hal/analogio/AnalogOut.h"
#include "common-hal/busio/I2C.h"
#include "common-hal/busio/SPI.h"
#include "common-hal/busio/UART.h"
#include "common-hal/dualbank/__init__.h"
#include "common-hal/ps2io/Ps2.h"
#include "common-hal/pulseio/PulseIn.h"
#include "common-hal/pwmio/PWMOut.h"
#include "common-hal/watchdog/WatchDogTimer.h"
#include "common-hal/socketpool/Socket.h"
#include "common-hal/wifi/__init__.h"
#include "supervisor/background_callback.h"
#include "supervisor/memory.h"
#include "supervisor/shared/tick.h"
#include "shared-bindings/microcontroller/__init__.h"
#include "shared-bindings/microcontroller/RunMode.h"
#include "shared-bindings/rtc/__init__.h"
#include "shared-bindings/socketpool/__init__.h"
#include "shared-module/os/__init__.h"

#include "peripherals/rmt.h"
#include "peripherals/timer.h"

#if CIRCUITPY_COUNTIO || CIRCUITPY_ROTARYIO || CIRCUITPY_FREQUENCYIO
#include "peripherals/pcnt.h"
#endif

#if CIRCUITPY_TOUCHIO_USE_NATIVE
#include "peripherals/touch.h"
#endif

#if CIRCUITPY_AUDIOBUSIO
#include "common-hal/audiobusio/__init__.h"
#endif

#if CIRCUITPY_BLEIO
#include "shared-bindings/_bleio/__init__.h"
#endif

#if CIRCUITPY_ESPCAMERA
#include "esp_camera.h"
#endif

#ifndef CONFIG_IDF_TARGET_ESP32
#include "soc/cache_memory.h"
#endif

#include "soc/efuse_reg.h"
#include "soc/rtc_cntl_reg.h"

#include "esp_debug_helpers.h"

#include "bootloader_flash_config.h"
#include "esp_efuse.h"
#include "esp_ipc.h"
#include "esp_rom_efuse.h"

#ifdef CONFIG_IDF_TARGET_ESP32
#include "esp32/rom/efuse.h"
#endif

#include "esp_log.h"
#define TAG "port"

uint32_t *heap;
uint32_t heap_size;

STATIC esp_timer_handle_t _tick_timer;
STATIC esp_timer_handle_t _sleep_timer;

TaskHandle_t circuitpython_task = NULL;

extern void esp_restart(void) NORETURN;

STATIC void tick_on_cp_core(void *arg) {
    supervisor_tick();

    // CircuitPython's VM is run in a separate FreeRTOS task from timer callbacks. So, we have to
    // notify the main task every time in case it's waiting for us.
    xTaskNotifyGive(circuitpython_task);
}

// This function may happen on the PRO core when CP is on the APP core. So, make
// sure we run on the CP core.
STATIC void tick_timer_cb(void *arg) {
    #if defined(CONFIG_FREERTOS_UNICORE) && CONFIG_FREERTOS_UNICORE
    tick_on_cp_core(arg);
    #else
    // This only blocks until the start of the function. That's ok since the PRO
    // core shouldn't care what we do.
    esp_ipc_call(CONFIG_ESP_MAIN_TASK_AFFINITY, tick_on_cp_core, NULL);
    #endif
}

void sleep_timer_cb(void *arg);

// The ESP-IDF determines these pins at runtime so we do too. This code is based on:
// https://github.com/espressif/esp-idf/blob/6d85d53ceec30c818a92c2fff8f5437d21c4720f/components/esp_hw_support/port/esp32/spiram_psram.c#L810
// IO-pins for PSRAM.
// WARNING: PSRAM shares all but the CS and CLK pins with the flash, so these defines
// hardcode the flash pins as well, making this code incompatible with either a setup
// that has the flash on non-standard pins or ESP32s with built-in flash.
#define PSRAM_SPIQ_SD0_IO          7
#define PSRAM_SPID_SD1_IO          8
#define PSRAM_SPIWP_SD3_IO         10
#define PSRAM_SPIHD_SD2_IO         9

#define FLASH_HSPI_CLK_IO          14
#define FLASH_HSPI_CS_IO           15
#define PSRAM_HSPI_SPIQ_SD0_IO     12
#define PSRAM_HSPI_SPID_SD1_IO     13
#define PSRAM_HSPI_SPIWP_SD3_IO    2
#define PSRAM_HSPI_SPIHD_SD2_IO    4

#ifdef CONFIG_SPIRAM
// PSRAM clock and cs IO should be configured based on hardware design.
// For ESP32-WROVER or ESP32-WROVER-B module, the clock IO is IO17, the cs IO is IO16,
// they are the default value for these two configs.
#define D0WD_PSRAM_CLK_IO          CONFIG_D0WD_PSRAM_CLK_IO  // Default value is 17
#define D0WD_PSRAM_CS_IO           CONFIG_D0WD_PSRAM_CS_IO   // Default value is 16

#define D2WD_PSRAM_CLK_IO          CONFIG_D2WD_PSRAM_CLK_IO  // Default value is 9
#define D2WD_PSRAM_CS_IO           CONFIG_D2WD_PSRAM_CS_IO   // Default value is 10

// There is no reason to change the pin of an embedded psram.
// So define the number of pin directly, instead of configurable.
#define D0WDR2_V3_PSRAM_CLK_IO    6
#define D0WDR2_V3_PSRAM_CS_IO     16

// For ESP32-PICO chip, the psram share clock with flash. The flash clock pin is fixed, which is IO6.
#define PICO_PSRAM_CLK_IO          6
#define PICO_PSRAM_CS_IO           CONFIG_PICO_PSRAM_CS_IO   // Default value is 10

#define PICO_V3_02_PSRAM_CLK_IO    10
#define PICO_V3_02_PSRAM_CS_IO     9
#endif // CONFIG_SPIRAM

static void _never_reset_spi_ram_flash(void) {
    #if defined(CONFIG_IDF_TARGET_ESP32)
    #if defined(CONFIG_SPIRAM)
    uint32_t pkg_ver = esp_efuse_get_pkg_ver();
    if (pkg_ver == EFUSE_RD_CHIP_VER_PKG_ESP32D2WDQ5) {
        never_reset_pin_number(D2WD_PSRAM_CLK_IO);
        never_reset_pin_number(D2WD_PSRAM_CS_IO);
    } else if (pkg_ver == EFUSE_RD_CHIP_VER_PKG_ESP32PICOD4 && esp_efuse_get_chip_ver() >= 3) {
        // This chip is ESP32-PICO-V3 and doesn't have PSRAM.
    } else if ((pkg_ver == EFUSE_RD_CHIP_VER_PKG_ESP32PICOD2) || (pkg_ver == EFUSE_RD_CHIP_VER_PKG_ESP32PICOD4)) {
        never_reset_pin_number(PICO_PSRAM_CLK_IO);
        never_reset_pin_number(PICO_PSRAM_CS_IO);
    } else if (pkg_ver == EFUSE_RD_CHIP_VER_PKG_ESP32PICOV302) {
        never_reset_pin_number(PICO_V3_02_PSRAM_CLK_IO);
        never_reset_pin_number(PICO_V3_02_PSRAM_CS_IO);
    } else if ((pkg_ver == EFUSE_RD_CHIP_VER_PKG_ESP32D0WDQ6) || (pkg_ver == EFUSE_RD_CHIP_VER_PKG_ESP32D0WDQ5)) {
        never_reset_pin_number(D0WD_PSRAM_CLK_IO);
        never_reset_pin_number(D0WD_PSRAM_CS_IO);
    } else if (pkg_ver == EFUSE_RD_CHIP_VER_PKG_ESP32D0WDR2V3) {
        never_reset_pin_number(D0WDR2_V3_PSRAM_CLK_IO);
        never_reset_pin_number(D0WDR2_V3_PSRAM_CS_IO);
    }
    #endif // CONFIG_SPIRAM

    const uint32_t spiconfig = esp_rom_efuse_get_flash_gpio_info();
    if (spiconfig == ESP_ROM_EFUSE_FLASH_DEFAULT_SPI) {
        never_reset_pin_number(SPI_IOMUX_PIN_NUM_CLK);
        never_reset_pin_number(SPI_IOMUX_PIN_NUM_CS);
        never_reset_pin_number(PSRAM_SPIQ_SD0_IO);
        never_reset_pin_number(PSRAM_SPID_SD1_IO);
        never_reset_pin_number(PSRAM_SPIWP_SD3_IO);
        never_reset_pin_number(PSRAM_SPIHD_SD2_IO);
    } else if (spiconfig == ESP_ROM_EFUSE_FLASH_DEFAULT_HSPI) {
        never_reset_pin_number(FLASH_HSPI_CLK_IO);
        never_reset_pin_number(FLASH_HSPI_CS_IO);
        never_reset_pin_number(PSRAM_HSPI_SPIQ_SD0_IO);
        never_reset_pin_number(PSRAM_HSPI_SPID_SD1_IO);
        never_reset_pin_number(PSRAM_HSPI_SPIWP_SD3_IO);
        never_reset_pin_number(PSRAM_HSPI_SPIHD_SD2_IO);
    } else {
        never_reset_pin_number(EFUSE_SPICONFIG_RET_SPICLK(spiconfig));
        never_reset_pin_number(EFUSE_SPICONFIG_RET_SPICS0(spiconfig));
        never_reset_pin_number(EFUSE_SPICONFIG_RET_SPIQ(spiconfig));
        never_reset_pin_number(EFUSE_SPICONFIG_RET_SPID(spiconfig));
        never_reset_pin_number(EFUSE_SPICONFIG_RET_SPIHD(spiconfig));
        never_reset_pin_number(bootloader_flash_get_wp_pin());
    }
    #endif // CONFIG_IDF_TARGET_ESP32
}

safe_mode_t port_init(void) {
    esp_timer_create_args_t args;
    args.callback = &tick_timer_cb;
    args.arg = NULL;
    args.dispatch_method = ESP_TIMER_TASK;
    args.name = "CircuitPython Tick";
    esp_timer_create(&args, &_tick_timer);

    args.callback = &sleep_timer_cb;
    args.arg = NULL;
    args.dispatch_method = ESP_TIMER_TASK;
    args.name = "CircuitPython Sleep";
    esp_timer_create(&args, &_sleep_timer);

    circuitpython_task = xTaskGetCurrentTaskHandle();

    // Send the ROM output out of the UART. This includes early logs.
    #ifdef DEBUG
    ets_install_uart_printf();
    #endif

    heap = NULL;

    #ifndef DEBUG
    #define DEBUG (0)
    #endif

    #define pin_GPIOn(n) pin_GPIO##n
    #define pin_GPIOn_EXPAND(x) pin_GPIOn(x)

    #ifdef CONFIG_CONSOLE_UART_TX_GPIO
    common_hal_never_reset_pin(&pin_GPIOn_EXPAND(CONFIG_CONSOLE_UART_TX_GPIO));
    #endif

    #ifdef CONFIG_CONSOLE_UART_RX_GPIO
    common_hal_never_reset_pin(&pin_GPIOn_EXPAND(CONFIG_CONSOLE_UART_RX_GPIO));
    #endif

    #if DEBUG
    // debug UART
    #ifdef CONFIG_IDF_TARGET_ESP32C3
    common_hal_never_reset_pin(&pin_GPIO20);
    common_hal_never_reset_pin(&pin_GPIO21);
    #elif defined(CONFIG_IDF_TARGET_ESP32S2) || defined(CONFIG_IDF_TARGET_ESP32S3)
    common_hal_never_reset_pin(&pin_GPIO43);
    common_hal_never_reset_pin(&pin_GPIO44);
    #endif
    #endif

    #ifndef ENABLE_JTAG
    #define ENABLE_JTAG (defined(DEBUG) && DEBUG)
    #endif

    #if ENABLE_JTAG
    // JTAG
    #ifdef CONFIG_IDF_TARGET_ESP32C3
    common_hal_never_reset_pin(&pin_GPIO4);
    common_hal_never_reset_pin(&pin_GPIO5);
    common_hal_never_reset_pin(&pin_GPIO6);
    common_hal_never_reset_pin(&pin_GPIO7);
    #elif defined(CONFIG_IDF_TARGET_ESP32S2) || defined(CONFIG_IDF_TARGET_ESP32S3)
    common_hal_never_reset_pin(&pin_GPIO39);
    common_hal_never_reset_pin(&pin_GPIO40);
    common_hal_never_reset_pin(&pin_GPIO41);
    common_hal_never_reset_pin(&pin_GPIO42);
    #endif
    #endif

    #ifdef CONFIG_SPIRAM
    {
        intptr_t heap_start = common_hal_espidf_get_psram_start();
        intptr_t heap_end = common_hal_espidf_get_psram_end();
        size_t spiram_size = heap_end - heap_start;
        if (spiram_size > 0) {
            heap = (uint32_t *)heap_start;
            heap_size = (heap_end - heap_start) / sizeof(uint32_t);
        } else {
            ESP_LOGE(TAG, "CONFIG_SPIRAM enabled but no spiram heap available");
        }
    }
    #endif

    _never_reset_spi_ram_flash();

    if (heap == NULL) {
        size_t heap_total = heap_caps_get_total_size(MALLOC_CAP_8BIT);
        heap_size = MIN(heap_caps_get_largest_free_block(MALLOC_CAP_8BIT), heap_total / 2);
        heap = malloc(heap_size);
        heap_size = heap_size / sizeof(uint32_t);
    }
    if (heap == NULL) {
        heap_size = 0;
        return SAFE_MODE_NO_HEAP;
    }

    esp_reset_reason_t reason = esp_reset_reason();
    switch (reason) {
        case ESP_RST_BROWNOUT:
            return SAFE_MODE_BROWNOUT;
        case ESP_RST_PANIC:
            return SAFE_MODE_HARD_FAULT;
        case ESP_RST_INT_WDT:
            // The interrupt watchdog is used internally to make sure that latency sensitive
            // interrupt code isn't blocked. User watchdog resets come through ESP_RST_WDT.
            return SAFE_MODE_WATCHDOG;
        case ESP_RST_WDT:
        default:
            break;
    }

    return SAFE_MODE_NONE;
}

void reset_port(void) {
    // TODO deinit for esp32-camera
    #if CIRCUITPY_ESPCAMERA
    esp_camera_deinit();
    #endif

    reset_all_pins();

    #if CIRCUITPY_ANALOGIO
    analogout_reset();
    #endif

    #if CIRCUITPY_AUDIOBUSIO
    i2s_reset();
    #endif

    #if CIRCUITPY_BUSIO
    i2c_reset();
    spi_reset();
    uart_reset();
    #endif

    #if CIRCUITPY_COUNTIO || CIRCUITPY_ROTARYIO || CIRCUITPY_FREQUENCYIO
    peripherals_pcnt_reset();
    #endif

    #if CIRCUITPY_DUALBANK
    dualbank_reset();
    #endif

    #if CIRCUITPY_ESPNOW
    espnow_reset();
    #endif

    #if CIRCUITPY_ESPULP
    espulp_reset();
    #endif

    #if CIRCUITPY_FREQUENCYIO
    peripherals_timer_reset();
    #endif

    #if CIRCUITPY_PS2IO
    ps2_reset();
    #endif

    #if CIRCUITPY_PULSEIO
    peripherals_rmt_reset();
    pulsein_reset();
    #endif

    #if CIRCUITPY_PWMIO
    pwmout_reset();
    #endif

    #if CIRCUITPY_RTC
    rtc_reset();
    #endif

    #if CIRCUITPY_SOCKETPOOL
    socketpool_user_reset();
    #endif

    #if CIRCUITPY_TOUCHIO_USE_NATIVE
    peripherals_touch_reset();
    #endif

    #if CIRCUITPY_WATCHDOG
    watchdog_reset();
    #endif

    // Yield so the idle task can run and do any IDF cleanup needed.
    port_yield();
}

void reset_to_bootloader(void) {
    common_hal_mcu_on_next_reset(RUNMODE_BOOTLOADER);
    esp_restart();
}

void reset_cpu(void) {
    #ifndef CONFIG_IDF_TARGET_ESP32C3
    esp_backtrace_print(100);
    #endif
    esp_restart();
}

uint32_t *port_heap_get_bottom(void) {
    return heap;
}

uint32_t *port_heap_get_top(void) {
    return heap + heap_size;
}

uint32_t *port_stack_get_limit(void) {
    #pragma GCC diagnostic push
    #pragma GCC diagnostic ignored "-Wcast-align"
    return (uint32_t *)pxTaskGetStackStart(NULL);
    #pragma GCC diagnostic pop
}

uint32_t *port_stack_get_top(void) {
    // The sizeof-arithmetic is so that the pointer arithmetic is done on units
    // of uint32_t instead of units of StackType_t.  StackType_t is an alias
    // for a byte sized type.
    //
    // The main stack is bigger than CONFIG_ESP_MAIN_TASK_STACK_SIZE -- an
    // "extra" size is added to it (TASK_EXTRA_STACK_SIZE).  This total size is
    // available as ESP_TASK_MAIN_STACK.  Presumably TASK_EXTRA_STACK_SIZE is
    // additional stack that can be used by the esp-idf runtime.  But what's
    // important for us is that some very outermost stack frames, such as
    // pyexec_friendly_repl, could lie inside the "extra" area and be invisible
    // to the garbage collector.
    return port_stack_get_limit() + ESP_TASK_MAIN_STACK / (sizeof(uint32_t) / sizeof(StackType_t));
}

bool port_has_fixed_stack(void) {
    return true;
}

// Place the word to save just after our BSS section that gets blanked.
void port_set_saved_word(uint32_t value) {
    REG_WRITE(RTC_CNTL_STORE0_REG, value);
}

uint32_t port_get_saved_word(void) {
    return REG_READ(RTC_CNTL_STORE0_REG);
}

uint64_t port_get_raw_ticks(uint8_t *subticks) {
    // Convert microseconds to subticks of 1/32768 seconds
    // 32768/1000000 = 64/15625 in lowest terms
    // this arithmetic overflows after 570 years
    int64_t all_subticks = esp_timer_get_time() * 512 / 15625;
    if (subticks != NULL) {
        *subticks = all_subticks % 32;
    }
    return all_subticks / 32;
}

// Enable 1/1024 second tick.
void port_enable_tick(void) {
    esp_timer_start_periodic(_tick_timer, 1000000 / 1024);
}

// Disable 1/1024 second tick.
void port_disable_tick(void) {
    esp_timer_stop(_tick_timer);
}

void port_wake_main_task() {
    xTaskNotifyGive(circuitpython_task);
}

void port_wake_main_task_from_isr() {
    BaseType_t xHigherPriorityTaskWoken = pdFALSE;
    vTaskNotifyGiveFromISR(circuitpython_task, &xHigherPriorityTaskWoken);
    if (xHigherPriorityTaskWoken == pdTRUE) {
        portYIELD_FROM_ISR();
    }
}

void port_yield() {
    vTaskDelay(4);
}

void sleep_timer_cb(void *arg) {
    port_wake_main_task();
}

void port_interrupt_after_ticks(uint32_t ticks) {
    uint64_t timeout_us = ticks * 1000000ull / 1024;
    if (esp_timer_start_once(_sleep_timer, timeout_us) != ESP_OK) {
        esp_timer_stop(_sleep_timer);
        esp_timer_start_once(_sleep_timer, timeout_us);
    }
}

// On the ESP we use FreeRTOS notifications instead of interrupts so this is a
// bit of a misnomer.
void port_idle_until_interrupt(void) {
    if (!background_callback_pending() && !autoreload_pending()) {
        xTaskNotifyWait(0x01, 0x01, NULL, portMAX_DELAY);
    }
}

void port_post_boot_py(bool heap_valid) {
    if (!heap_valid && filesystem_present()) {
        mp_int_t reserved;
        if (common_hal_os_getenv_int("CIRCUITPY_RESERVED_PSRAM", &reserved) == GETENV_OK) {
            common_hal_espidf_set_reserved_psram(reserved);
        }
        common_hal_espidf_reserve_psram();
    }
}

// Wrap main in app_main that the IDF expects.
extern void main(void);
extern void app_main(void);
void app_main(void) {
    main();
}