/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2016 Damien P. George * Copyright (c) 2019 Artur Pacholec * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "shared-bindings/microcontroller/Pin.h" #include "shared-bindings/microcontroller/__init__.h" #include "shared-bindings/busio/UART.h" #include "mpconfigport.h" #include "lib/utils/interrupt_char.h" #include "supervisor/shared/tick.h" #include "py/gc.h" #include "py/mperrno.h" #include "py/runtime.h" #include "py/stream.h" #include "periph.h" #include "fsl_lpuart.h" //arrays use 0 based numbering: UART1 is stored at index 0 #define MAX_UART 8 STATIC bool reserved_uart[MAX_UART]; #define UART_CLOCK_FREQ (CLOCK_GetPllFreq(kCLOCK_PllUsb1) / 6U) / (CLOCK_GetDiv(kCLOCK_UartDiv) + 1U) static void config_periph_pin(const mcu_periph_obj_t *periph) { IOMUXC_SetPinMux( periph->pin->mux_reg, periph->mux_mode, periph->input_reg, periph->input_idx, 0, 0); IOMUXC_SetPinConfig(0, 0, 0, 0, periph->pin->cfg_reg, IOMUXC_SW_PAD_CTL_PAD_HYS(0) | IOMUXC_SW_PAD_CTL_PAD_PUS(1) | IOMUXC_SW_PAD_CTL_PAD_PUE(1) | IOMUXC_SW_PAD_CTL_PAD_PKE(1) | IOMUXC_SW_PAD_CTL_PAD_ODE(0) | IOMUXC_SW_PAD_CTL_PAD_SPEED(1) | IOMUXC_SW_PAD_CTL_PAD_DSE(6) | IOMUXC_SW_PAD_CTL_PAD_SRE(0)); } void LPUART_UserCallback(LPUART_Type *base, lpuart_handle_t *handle, status_t status, void *user_data) { busio_uart_obj_t *self = (busio_uart_obj_t*)user_data; if (status == kStatus_LPUART_RxIdle) { self->rx_ongoing = false; } } void uart_reset(void) { for(uint i = 0; i < MP_ARRAY_SIZE(mcu_uart_banks); i++) { reserved_uart[i] = false; LPUART_Deinit(mcu_uart_banks[i]); } } void common_hal_busio_uart_construct(busio_uart_obj_t *self, const mcu_pin_obj_t * tx, const mcu_pin_obj_t * rx, const mcu_pin_obj_t * rts, const mcu_pin_obj_t * cts, const mcu_pin_obj_t * rs485_dir, bool rs485_invert, uint32_t baudrate, uint8_t bits, busio_uart_parity_t parity, uint8_t stop, mp_float_t timeout, uint16_t receiver_buffer_size, byte* receiver_buffer, bool sigint_enabled) { self->baudrate = baudrate; self->character_bits = bits; self->timeout_ms = timeout * 1000; // We are transmitting one direction if one pin is NULL and the other isn't. bool is_onedirection = (rx == NULL) != (tx == NULL); bool uart_taken = false; const uint32_t rx_count = MP_ARRAY_SIZE(mcu_uart_rx_list); const uint32_t tx_count = MP_ARRAY_SIZE(mcu_uart_tx_list); // RX loop handles rx only, or both rx and tx if (rx != NULL) { for (uint32_t i = 0; i < rx_count; ++i) { if (mcu_uart_rx_list[i].pin != rx) { continue; } // If TX is on, keep looking, else stop if (tx != NULL) { for (uint32_t j = 0; j < tx_count; ++j) { if (mcu_uart_tx_list[j].pin != tx || mcu_uart_tx_list[j].bank_idx != mcu_uart_rx_list[i].bank_idx) { continue; } // If UART is taken, break (pins never have >1 periph) if (reserved_uart[mcu_uart_rx_list[i].bank_idx - 1]) { uart_taken = true; break; } self->rx = &mcu_uart_rx_list[i]; self->tx = &mcu_uart_tx_list[j]; break; } if (self->tx != NULL || uart_taken) { break; } } else { if (reserved_uart[mcu_uart_rx_list[i].bank_idx - 1]) { uart_taken = true; break; } self->rx = &mcu_uart_rx_list[i]; } } } else if (tx != NULL) { // TX only case for (uint32_t i = 0; i < tx_count; ++i) { if (mcu_uart_tx_list[i].pin != tx) { continue; } if (reserved_uart[mcu_uart_tx_list[i].bank_idx - 1]) { uart_taken = true; break; } self->tx = &mcu_uart_tx_list[i]; break; } } else { mp_raise_ValueError(translate("Supply at least one UART pin")); } if (uart_taken) { mp_raise_ValueError(translate("Hardware in use, try alternative pins")); } if(self->rx == NULL && self->tx == NULL) { mp_raise_ValueError(translate("Invalid pins")); } if (is_onedirection && ((rts != NULL) || (cts != NULL))) { mp_raise_ValueError(translate("Both RX and TX required for flow control")); } // Filter for sane settings for RS485 if (rs485_dir != NULL) { if ((rts != NULL) || (cts != NULL)) { mp_raise_ValueError(translate("Cannot specify RTS or CTS in RS485 mode")); } // For IMXRT the RTS pin is used for RS485 direction rts = rs485_dir; } else { if (rs485_invert) { mp_raise_ValueError(translate("RS485 inversion specified when not in RS485 mode")); } } // Now check for RTS/CTS (or overloaded RS485 direction) pin(s) const uint32_t rts_count = MP_ARRAY_SIZE(mcu_uart_rts_list); const uint32_t cts_count = MP_ARRAY_SIZE(mcu_uart_cts_list); if (rts != NULL) { for (uint32_t i=0; i < rts_count; ++i) { if (mcu_uart_rts_list[i].bank_idx == self->rx->bank_idx) { if (mcu_uart_rts_list[i].pin == rts) { self->rts = &mcu_uart_rts_list[i]; break; } } } if (self->rts == NULL){ mp_raise_ValueError(translate("Selected RTS pin not valid")); } } if (cts != NULL) { for (uint32_t i=0; i < cts_count; ++i) { if (mcu_uart_cts_list[i].bank_idx == self->rx->bank_idx) { if (mcu_uart_cts_list[i].pin == cts) { self->cts = &mcu_uart_cts_list[i]; break; } } } if (self->cts == NULL){ mp_raise_ValueError(translate("Selected CTS pin not valid")); } } if (self->rx) { self->uart = mcu_uart_banks[self->rx->bank_idx - 1]; } else { self->uart = mcu_uart_banks[self->tx->bank_idx - 1]; } if (self->rx) { config_periph_pin(self->rx); } if (self->tx) { config_periph_pin(self->tx); } if (self->rts) { config_periph_pin(self->rts); } if (self->cts) { config_periph_pin(self->cts); } lpuart_config_t config = { 0 }; LPUART_GetDefaultConfig(&config); config.dataBitsCount = self->character_bits == 8 ? kLPUART_EightDataBits : kLPUART_SevenDataBits; config.baudRate_Bps = self->baudrate; config.enableTx = self->tx != NULL; config.enableRx = self->rx != NULL; config.enableRxRTS = self->rts != NULL; config.enableTxCTS = self->cts != NULL; if (self->rts != NULL) { claim_pin(self->rts->pin); } if (self->cts != NULL) { claim_pin(self->cts->pin); } LPUART_Init(self->uart, &config, UART_CLOCK_FREQ); // Before we init, setup RS485 direction pin // ..unfortunately this isn't done by the driver library uint32_t modir = (self->uart->MODIR) & ~(LPUART_MODIR_TXRTSPOL_MASK | LPUART_MODIR_TXRTSE_MASK); if (rs485_dir != NULL) { modir |= LPUART_MODIR_TXRTSE_MASK; if (rs485_invert) { modir |= LPUART_MODIR_TXRTSPOL_MASK; } } self->uart->MODIR = modir; if (self->tx != NULL) { claim_pin(self->tx->pin); } if (self->rx != NULL) { // The LPUART ring buffer wastes one byte to distinguish between full and empty. self->ringbuf = gc_alloc(receiver_buffer_size + 1, false, true /*long-lived*/); if (!self->ringbuf) { LPUART_Deinit(self->uart); mp_raise_msg(&mp_type_MemoryError, translate("Failed to allocate RX buffer")); } LPUART_TransferCreateHandle(self->uart, &self->handle, LPUART_UserCallback, self); // Pass actual allocated size; the LPUART routines are cognizant that // the capacity is one less than the size. LPUART_TransferStartRingBuffer(self->uart, &self->handle, self->ringbuf, receiver_buffer_size + 1); claim_pin(self->rx->pin); } } bool common_hal_busio_uart_deinited(busio_uart_obj_t *self) { return self->rx == NULL && self->tx == NULL; } void common_hal_busio_uart_deinit(busio_uart_obj_t *self) { if (common_hal_busio_uart_deinited(self)) { return; } if (self->rx) { reserved_uart[self->rx->bank_idx - 1] = false; } else { reserved_uart[self->tx->bank_idx - 1] = false; } LPUART_Deinit(self->uart); gc_free(self->ringbuf); if (self->rx) { common_hal_reset_pin(self->rx->pin); } if (self->tx) { common_hal_reset_pin(self->tx->pin); } self->rx = NULL; self->tx = NULL; } // Read characters. size_t common_hal_busio_uart_read(busio_uart_obj_t *self, uint8_t *data, size_t len, int *errcode) { if (self->rx == NULL) { mp_raise_ValueError(translate("No RX pin")); } if (len == 0) { // Nothing to read. return 0; } lpuart_transfer_t xfer = { .data = data, .dataSize = len, }; self->rx_ongoing = true; LPUART_TransferReceiveNonBlocking(self->uart, &self->handle, &xfer, NULL); uint64_t start_ticks = supervisor_ticks_ms64(); // Wait for all bytes received or timeout while (self->rx_ongoing && (supervisor_ticks_ms64() - start_ticks < self->timeout_ms) ) { RUN_BACKGROUND_TASKS; // Allow user to break out of a timeout with a KeyboardInterrupt. if (mp_hal_is_interrupted()) { break; } } // if we timed out, stop the transfer if (self->rx_ongoing) { LPUART_TransferAbortReceive(self->uart, &self->handle); } // No data left, we got it all if (self->handle.rxData == NULL) { return len; } // The only place we can reliably tell how many bytes have been received is from the current // wp in the handle (because the abort nukes rxDataSize, and reading it before abort is a race.) return self->handle.rxData - data; } // Write characters. size_t common_hal_busio_uart_write(busio_uart_obj_t *self, const uint8_t *data, size_t len, int *errcode) { if (self->tx == NULL) { mp_raise_ValueError(translate("No TX pin")); } LPUART_WriteBlocking(self->uart, data, len); return len; } uint32_t common_hal_busio_uart_get_baudrate(busio_uart_obj_t *self) { return self->baudrate; } void common_hal_busio_uart_set_baudrate(busio_uart_obj_t *self, uint32_t baudrate) { if (LPUART_SetBaudRate(self->uart, baudrate, UART_CLOCK_FREQ) == kStatus_Success) { self->baudrate = baudrate; } } mp_float_t common_hal_busio_uart_get_timeout(busio_uart_obj_t *self) { return (mp_float_t) (self->timeout_ms / 1000.0f); } void common_hal_busio_uart_set_timeout(busio_uart_obj_t *self, mp_float_t timeout) { self->timeout_ms = timeout * 1000; } uint32_t common_hal_busio_uart_rx_characters_available(busio_uart_obj_t *self) { return LPUART_TransferGetRxRingBufferLength(self->uart, &self->handle); } void common_hal_busio_uart_clear_rx_buffer(busio_uart_obj_t *self) { self->handle.rxRingBufferHead = self->handle.rxRingBufferTail; } bool common_hal_busio_uart_ready_to_tx(busio_uart_obj_t *self) { if (self->tx == NULL) { return false; } return LPUART_GetStatusFlags(self->uart) & kLPUART_TxDataRegEmptyFlag; }