/* * This file is part of the Micro Python project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2014 Damien P. George * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ // We can't include stdio.h because it defines _types_fd_set, but we // need to use the CC3000 version of this type. #include #include #include #include // CC3000 defines its own ENOBUFS (different to standard one!) #undef ENOBUFS #include "stm32f4xx_hal.h" #include "mpconfig.h" #include "nlr.h" #include "misc.h" #include "qstr.h" #include "obj.h" #include "objtuple.h" #include "objlist.h" #include "stream.h" #include "runtime.h" #include "modnetwork.h" #include "pin.h" #include "genhdr/pins.h" #include "spi.h" #include "pybioctl.h" #include "hci.h" #include "socket.h" #include "inet_ntop.h" #include "inet_pton.h" #include "ccspi.h" #include "wlan.h" #include "nvmem.h" #include "netapp.h" #include "patch_prog.h" /// \moduleref network int CC3000_EXPORT(errno); // for cc3000 driver STATIC mp_obj_t cc3k_socket_new(mp_uint_t family, mp_uint_t type, mp_uint_t protocol, int *_errno); STATIC volatile uint32_t fd_closed_state = 0; STATIC volatile bool wlan_connected = false; STATIC volatile bool ip_obtained = false; STATIC int cc3k_get_fd_closed_state(int fd) { return fd_closed_state & (1 << fd); } STATIC void cc3k_set_fd_closed_state(int fd) { fd_closed_state |= 1 << fd; } STATIC void cc3k_reset_fd_closed_state(int fd) { fd_closed_state &= ~(1 << fd); } STATIC void cc3k_callback(long event_type, char *data, unsigned char length) { switch (event_type) { case HCI_EVNT_WLAN_UNSOL_CONNECT: wlan_connected = true; break; case HCI_EVNT_WLAN_UNSOL_DISCONNECT: // link down wlan_connected = false; ip_obtained = false; break; case HCI_EVNT_WLAN_UNSOL_DHCP: ip_obtained = true; break; case HCI_EVNT_BSD_TCP_CLOSE_WAIT: // mark socket for closure cc3k_set_fd_closed_state(data[0]); break; } } STATIC mp_obj_t cc3k_socket(mp_obj_t nic, int domain, int type, int fileno, int *_errno) { switch (domain) { case MOD_NETWORK_AF_INET: domain = AF_INET; break; case MOD_NETWORK_AF_INET6: domain = AF_INET6; break; default: *_errno = EAFNOSUPPORT; return MP_OBJ_NULL; } switch (type) { case MOD_NETWORK_SOCK_STREAM: type = SOCK_STREAM; break; case MOD_NETWORK_SOCK_DGRAM: type = SOCK_DGRAM; break; case MOD_NETWORK_SOCK_RAW: type = SOCK_RAW; break; default: *_errno = EINVAL; return MP_OBJ_NULL; } return cc3k_socket_new(domain, type, 0, _errno); } STATIC int cc3k_gethostbyname(mp_obj_t nic, const char *name, mp_uint_t len, uint8_t *out_ip) { uint32_t ip; if (CC3000_EXPORT(gethostbyname)((char*)name, len, &ip) < 0) { return CC3000_EXPORT(errno); } if (ip == 0) { // unknown host return ENOENT; } out_ip[0] = ip >> 24; out_ip[1] = ip >> 16; out_ip[2] = ip >> 8; out_ip[3] = ip; return 0; } /******************************************************************************/ // Micro Python bindings; CC3k class /// \class CC3k - driver for CC3000 Wifi modules typedef struct _cc3k_obj_t { mp_obj_base_t base; } cc3k_obj_t; /// \classmethod \constructor(spi, pin_cs, pin_en, pin_irq) /// Initialise the CC3000 using the given SPI bus and pins and return a CC3k object. // // Note: pins were originally hard-coded to: // PYBv1.0: init(pyb.SPI(2), pyb.Pin.board.Y5, pyb.Pin.board.Y4, pyb.Pin.board.Y3) // [SPI on Y position; Y6=B13=SCK, Y7=B14=MISO, Y8=B15=MOSI] // // STM32F4DISC: init(pyb.SPI(2), pyb.Pin.cpu.A15, pyb.Pin.cpu.B10, pyb.Pin.cpu.B11) STATIC mp_obj_t cc3k_make_new(mp_obj_t type_in, mp_uint_t n_args, mp_uint_t n_kw, const mp_obj_t *args) { // check arguments mp_arg_check_num(n_args, n_kw, 4, 4, false); // set the pins to use SpiInit( spi_get_handle(args[0]), pin_find(args[1]), pin_find(args[2]), pin_find(args[3]) ); // initialize and start the module wlan_init(cc3k_callback, NULL, NULL, NULL, ReadWlanInterruptPin, SpiResumeSpi, SpiPauseSpi, WriteWlanPin); if (wlan_start(0) != 0) { nlr_raise(mp_obj_new_exception_msg( &mp_type_OSError, "Failed to init wlan module")); } // set connection policy. this should be called explicitly by the user // wlan_ioctl_set_connection_policy(0, 0, 0); // Mask out all non-required events from the CC3000 wlan_set_event_mask(HCI_EVNT_WLAN_KEEPALIVE| HCI_EVNT_WLAN_UNSOL_INIT| HCI_EVNT_WLAN_ASYNC_PING_REPORT| HCI_EVNT_WLAN_ASYNC_SIMPLE_CONFIG_DONE); cc3k_obj_t *cc3k = m_new_obj(cc3k_obj_t); cc3k->base.type = (mp_obj_type_t*)&mod_network_nic_type_cc3k; // register with network module mod_network_register_nic(cc3k); return cc3k; } /// \method connect(ssid, key=None, *, security=WPA2, bssid=None) STATIC mp_obj_t cc3k_connect(mp_uint_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { static const mp_arg_t allowed_args[] = { { MP_QSTR_ssid, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} }, { MP_QSTR_key, MP_ARG_OBJ, {.u_obj = mp_const_none} }, { MP_QSTR_security, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = WLAN_SEC_WPA2} }, { MP_QSTR_bssid, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = mp_const_none} }, }; // parse args mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); // get ssid mp_uint_t ssid_len; const char *ssid = mp_obj_str_get_data(args[0].u_obj, &ssid_len); // get key and sec mp_uint_t key_len = 0; const char *key = NULL; mp_uint_t sec = WLAN_SEC_UNSEC; if (args[1].u_obj != mp_const_none) { key = mp_obj_str_get_data(args[1].u_obj, &key_len); sec = args[2].u_int; } // get bssid const char *bssid = NULL; if (args[3].u_obj != mp_const_none) { bssid = mp_obj_str_get_str(args[3].u_obj); } // connect to AP if (wlan_connect(sec, (char*)ssid, ssid_len, (uint8_t*)bssid, (uint8_t*)key, key_len) != 0) { nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_OSError, "could not connect to ssid=%s, sec=%d, key=%s\n", ssid, sec, key)); } return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_KW(cc3k_connect_obj, 1, cc3k_connect); STATIC mp_obj_t cc3k_disconnect(mp_obj_t self_in) { int ret = wlan_disconnect(); return mp_obj_new_int(ret); } STATIC MP_DEFINE_CONST_FUN_OBJ_1(cc3k_disconnect_obj, cc3k_disconnect); STATIC mp_obj_t cc3k_is_connected(mp_obj_t self_in) { if (wlan_connected && ip_obtained) { return mp_const_true; } return mp_const_false; } STATIC MP_DEFINE_CONST_FUN_OBJ_1(cc3k_is_connected_obj, cc3k_is_connected); STATIC mp_obj_t cc3k_ifconfig(mp_obj_t self_in) { tNetappIpconfigRetArgs ipconfig={{0}}; uint8_t *ip = &ipconfig.aucIP[0]; uint8_t *mask= &ipconfig.aucSubnetMask[0]; uint8_t *gw= &ipconfig.aucDefaultGateway[0]; uint8_t *dhcp= &ipconfig.aucDHCPServer[0]; uint8_t *dns= &ipconfig.aucDNSServer[0]; uint8_t *mac= &ipconfig.uaMacAddr[0]; uint8_t *ssid= &ipconfig.uaSSID[0]; netapp_ipconfig(&ipconfig); printf ("IP:%d.%d.%d.%d\n" \ "Mask:%d.%d.%d.%d\n"\ "GW:%d.%d.%d.%d\n" \ "DHCP:%d.%d.%d.%d\n"\ "DNS:%d.%d.%d.%d\n" \ "MAC:%02X:%02X:%02X:%02X:%02X:%02X\n"\ "SSID: %s\n", ip[3], ip[2], ip[1], ip[0], mask[3], mask[2], mask[1], mask[0], gw[3], gw[2], gw[1], gw[0], dhcp[3], dhcp[2], dhcp[1], dhcp[0], dns[3], dns[2], dns[1], dns[0], mac[5], mac[4], mac[3], mac[2], mac[1], mac[0], ssid); return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_1(cc3k_ifconfig_obj, cc3k_ifconfig); STATIC mp_obj_t cc3k_patch_version(mp_obj_t self_in) { uint8_t pver[2]; mp_obj_tuple_t *t_pver; nvmem_read_sp_version(pver); t_pver = mp_obj_new_tuple(2, NULL); t_pver->items[0] = mp_obj_new_int(pver[0]); t_pver->items[1] = mp_obj_new_int(pver[1]); return t_pver; } STATIC MP_DEFINE_CONST_FUN_OBJ_1(cc3k_patch_version_obj, cc3k_patch_version); STATIC mp_obj_t cc3k_patch_program(mp_obj_t self_in, mp_obj_t key_in) { const char *key = mp_obj_str_get_str(key_in); if (key[0] == 'p' && key[1] == 'g' && key[2] == 'm' && key[3] == '\0') { patch_prog_start(); } else { printf("please pass 'pgm' as argument in order to program\n"); } return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_2(cc3k_patch_program_obj, cc3k_patch_program); STATIC const mp_map_elem_t cc3k_locals_dict_table[] = { { MP_OBJ_NEW_QSTR(MP_QSTR_connect), (mp_obj_t)&cc3k_connect_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_disconnect), (mp_obj_t)&cc3k_disconnect_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_is_connected), (mp_obj_t)&cc3k_is_connected_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_ifconfig), (mp_obj_t)&cc3k_ifconfig_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_patch_version), (mp_obj_t)&cc3k_patch_version_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_patch_program), (mp_obj_t)&cc3k_patch_program_obj }, // class constants { MP_OBJ_NEW_QSTR(MP_QSTR_WEP), MP_OBJ_NEW_SMALL_INT(WLAN_SEC_WEP) }, { MP_OBJ_NEW_QSTR(MP_QSTR_WPA), MP_OBJ_NEW_SMALL_INT(WLAN_SEC_WPA) }, { MP_OBJ_NEW_QSTR(MP_QSTR_WPA2), MP_OBJ_NEW_SMALL_INT(WLAN_SEC_WPA2) }, }; STATIC MP_DEFINE_CONST_DICT(cc3k_locals_dict, cc3k_locals_dict_table); const mod_network_nic_type_t mod_network_nic_type_cc3k = { .base = { { &mp_type_type }, .name = MP_QSTR_CC3k, //.print = cc3k_print, .make_new = cc3k_make_new, .locals_dict = (mp_obj_t)&cc3k_locals_dict, }, .socket = cc3k_socket, .gethostbyname = cc3k_gethostbyname, }; /******************************************************************************/ // Micro Python bindings; CC3k socket class #define MAX_ADDRSTRLEN (128) #define MAX_RX_PACKET (CC3000_RX_BUFFER_SIZE-CC3000_MINIMAL_RX_SIZE-1) #define MAX_TX_PACKET (CC3000_TX_BUFFER_SIZE-CC3000_MINIMAL_TX_SIZE-1) typedef struct _cc3k_socket_obj_t { mp_obj_base_t base; int fd; } cc3k_socket_obj_t; STATIC const mp_obj_type_t cc3k_socket_type; STATIC mp_obj_t cc3k_socket_new(mp_uint_t family, mp_uint_t type, mp_uint_t protocol, int *_errno) { // create socket object cc3k_socket_obj_t *s = m_new_obj_with_finaliser(cc3k_socket_obj_t); s->base.type = (mp_obj_t)&cc3k_socket_type; // open socket s->fd = CC3000_EXPORT(socket)(family, type, protocol); if (s->fd < 0) { m_del_obj(cc3k_socket_obj_t, s); *_errno = CC3000_EXPORT(errno); return MP_OBJ_NULL; } // clear socket state cc3k_reset_fd_closed_state(s->fd); return s; } STATIC void cc3k_socket_print(void (*print)(void *env, const char *fmt, ...), void *env, mp_obj_t self_in, mp_print_kind_t kind) { cc3k_socket_obj_t *self = self_in; printf("", self->fd); } STATIC mp_obj_t cc3k_socket_send(mp_obj_t self_in, mp_obj_t buf_in) { cc3k_socket_obj_t *self = self_in; if (cc3k_get_fd_closed_state(self->fd)) { CC3000_EXPORT(closesocket)(self->fd); nlr_raise(mp_obj_new_exception_arg1(&mp_type_OSError, MP_OBJ_NEW_SMALL_INT(EPIPE))); } mp_buffer_info_t bufinfo; mp_get_buffer_raise(buf_in, &bufinfo, MP_BUFFER_READ); // CC3K does not handle fragmentation, and will overflow, // split the packet into smaller ones and send them out. mp_int_t bytes = 0; while (bytes < bufinfo.len) { int n = MIN((bufinfo.len - bytes), MAX_TX_PACKET); n = CC3000_EXPORT(send)(self->fd, (uint8_t*)bufinfo.buf + bytes, n, 0); if (n <= 0) { nlr_raise(mp_obj_new_exception_arg1(&mp_type_OSError, MP_OBJ_NEW_SMALL_INT(CC3000_EXPORT(errno)))); } bytes += n; } return MP_OBJ_NEW_SMALL_INT(bytes); } STATIC MP_DEFINE_CONST_FUN_OBJ_2(cc3k_socket_send_obj, cc3k_socket_send); STATIC mp_obj_t cc3k_socket_recv(mp_obj_t self_in, mp_obj_t len_in) { cc3k_socket_obj_t *self = self_in; if (cc3k_get_fd_closed_state(self->fd)) { CC3000_EXPORT(closesocket)(self->fd); nlr_raise(mp_obj_new_exception_arg1(&mp_type_OSError, MP_OBJ_NEW_SMALL_INT(EPIPE))); } // recv upto MAX_RX_PACKET mp_int_t len = mp_obj_get_int(len_in); len = MIN(len, MAX_RX_PACKET); byte *buf; mp_obj_t ret_obj = mp_obj_str_builder_start(&mp_type_bytes, len, &buf); len = CC3000_EXPORT(recv)(self->fd, buf, len, 0); if (len == 0) { return mp_const_empty_bytes; } else if (len < 0) { nlr_raise(mp_obj_new_exception_arg1(&mp_type_OSError, MP_OBJ_NEW_SMALL_INT(CC3000_EXPORT(errno)))); } else { return mp_obj_str_builder_end_with_len(ret_obj, len); } } STATIC MP_DEFINE_CONST_FUN_OBJ_2(cc3k_socket_recv_obj, cc3k_socket_recv); STATIC mp_obj_t cc3k_socket_bind(mp_obj_t self_in, mp_obj_t addr_obj) { cc3k_socket_obj_t *self = self_in; mp_obj_t *addr; mp_obj_get_array_fixed_n(addr_obj, 2, &addr); // fill sockaddr struct int port = mp_obj_get_int(addr[1]); sockaddr_in addr_in = { .sin_family = AF_INET, .sin_port = htons(port), .sin_addr.s_addr = 0,// INADDR_ANY .sin_zero = {0} }; const char *host = mp_obj_str_get_str(addr[0]); if (strlen(host) && !inet_pton(AF_INET, host, &addr_in.sin_addr.s_addr)) { nlr_raise(mp_obj_new_exception_msg(&mp_type_OSError, "invalid IP address")); } // bind socket if (CC3000_EXPORT(bind)(self->fd, (sockaddr*) &addr_in, sizeof(sockaddr_in)) < 0) { nlr_raise(mp_obj_new_exception_msg(&mp_type_OSError, "bind failed")); } return mp_const_true; } STATIC MP_DEFINE_CONST_FUN_OBJ_2(cc3k_socket_bind_obj, cc3k_socket_bind); STATIC mp_obj_t cc3k_socket_listen(mp_obj_t self_in, mp_obj_t backlog) { cc3k_socket_obj_t *self = self_in; if (CC3000_EXPORT(listen)(self->fd, mp_obj_get_int(backlog)) < 0) { nlr_raise(mp_obj_new_exception_msg(&mp_type_OSError, "listen failed")); } return mp_const_true; } STATIC MP_DEFINE_CONST_FUN_OBJ_2(cc3k_socket_listen_obj, cc3k_socket_listen); STATIC mp_obj_t cc3k_socket_accept(mp_obj_t self_in) { cc3k_socket_obj_t *self = self_in; int fd; sockaddr addr; socklen_t addr_len = sizeof(sockaddr); // accept incoming connection if ((fd = CC3000_EXPORT(accept)(self->fd, &addr, &addr_len)) < 0) { nlr_raise(mp_obj_new_exception_msg(&mp_type_OSError, "accept failed")); } // clear socket state cc3k_reset_fd_closed_state(fd); // create new socket object cc3k_socket_obj_t *socket_obj = m_new_obj_with_finaliser(cc3k_socket_obj_t); socket_obj->base.type = (mp_obj_t)&cc3k_socket_type; socket_obj->fd = fd; char buf[MAX_ADDRSTRLEN]={0}; if (inet_ntop(addr.sa_family, &(((sockaddr_in*)&addr)->sin_addr), buf, MAX_ADDRSTRLEN) == NULL) { nlr_raise(mp_obj_new_exception_msg(&mp_type_OSError, "invalid IP address")); } mp_obj_tuple_t *cli = mp_obj_new_tuple(2, NULL); mp_obj_tuple_t *cli_addr = mp_obj_new_tuple(2, NULL); cli->items[0] = socket_obj; cli->items[1] = cli_addr; cli_addr->items[0] = mp_obj_new_str(buf, strlen(buf), false); cli_addr->items[1] = mp_obj_new_int(((sockaddr_in*)&addr)->sin_port); return cli; } STATIC MP_DEFINE_CONST_FUN_OBJ_1(cc3k_socket_accept_obj, cc3k_socket_accept); STATIC mp_obj_t cc3k_socket_connect(mp_obj_t self_in, mp_obj_t addr_obj) { cc3k_socket_obj_t *self = self_in; mp_obj_t *addr; mp_obj_get_array_fixed_n(addr_obj, 2, &addr); // fill sockaddr struct int port = mp_obj_get_int(addr[1]); sockaddr_in addr_in = { .sin_family = AF_INET, .sin_port = htons(port), .sin_addr.s_addr = 0, // to be filled below using inet_pton .sin_zero = {0} }; const char *host = mp_obj_str_get_str(addr[0]); if (!inet_pton(AF_INET, host, &addr_in.sin_addr.s_addr)) { nlr_raise(mp_obj_new_exception_msg(&mp_type_OSError, "invalid IP address")); } //printf("doing connect: fd=%d, sockaddr=(%d, %d, %lu)\n", self->fd, addr_in.sin_family, addr_in.sin_port, addr_in.sin_addr.s_addr); int ret = CC3000_EXPORT(connect)(self->fd, (sockaddr*)&addr_in, sizeof(sockaddr_in)); if (ret != 0) { nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_OSError, "[Errno %d] connect failed", ret)); } return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_2(cc3k_socket_connect_obj, cc3k_socket_connect); STATIC mp_obj_t cc3k_socket_settimeout(mp_obj_t self_in, mp_obj_t timeout) { cc3k_socket_obj_t *self = self_in; int optval = mp_obj_get_int(timeout); socklen_t optlen = sizeof(optval); if (CC3000_EXPORT(setsockopt)(self->fd, SOL_SOCKET, SOCKOPT_RECV_TIMEOUT, &optval, optlen) != 0) { nlr_raise(mp_obj_new_exception_msg(&mp_type_OSError, "setsockopt failed")); } return mp_const_true; } STATIC MP_DEFINE_CONST_FUN_OBJ_2(cc3k_socket_settimeout_obj, cc3k_socket_settimeout); STATIC mp_obj_t cc3k_socket_setblocking(mp_obj_t self_in, mp_obj_t blocking) { cc3k_socket_obj_t *self = self_in; int optval; socklen_t optlen = sizeof(optval); if (mp_obj_get_int(blocking)) { optval = SOCK_OFF; // Enable non-blocking } else { optval = SOCK_ON; } if (CC3000_EXPORT(setsockopt)(self->fd, SOL_SOCKET, SOCKOPT_RECV_NONBLOCK, &optval, optlen) != 0 || CC3000_EXPORT(setsockopt)(self->fd, SOL_SOCKET, SOCKOPT_ACCEPT_NONBLOCK, &optval, optlen) != 0 ) { nlr_raise(mp_obj_new_exception_msg(&mp_type_OSError, "setsockopt failed")); } return mp_const_true; } STATIC MP_DEFINE_CONST_FUN_OBJ_2(cc3k_socket_setblocking_obj, cc3k_socket_setblocking); STATIC mp_obj_t cc3k_socket_close(mp_obj_t self_in) { cc3k_socket_obj_t *self = self_in; CC3000_EXPORT(closesocket)(self->fd); return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_1(cc3k_socket_close_obj, cc3k_socket_close); STATIC const mp_map_elem_t cc3k_socket_locals_dict_table[] = { { MP_OBJ_NEW_QSTR(MP_QSTR_send), (mp_obj_t)&cc3k_socket_send_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_recv), (mp_obj_t)&cc3k_socket_recv_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_bind), (mp_obj_t)&cc3k_socket_bind_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_listen), (mp_obj_t)&cc3k_socket_listen_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_accept), (mp_obj_t)&cc3k_socket_accept_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_connect), (mp_obj_t)&cc3k_socket_connect_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_settimeout), (mp_obj_t)&cc3k_socket_settimeout_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_setblocking), (mp_obj_t)&cc3k_socket_setblocking_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_close), (mp_obj_t)&cc3k_socket_close_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR___del__), (mp_obj_t)&cc3k_socket_close_obj }, }; STATIC MP_DEFINE_CONST_DICT(cc3k_socket_locals_dict, cc3k_socket_locals_dict_table); mp_uint_t cc3k_ioctl(mp_obj_t self_in, mp_uint_t request, int *errcode, ...) { cc3k_socket_obj_t *self = self_in; va_list vargs; va_start(vargs, errcode); mp_uint_t ret; if (request == MP_IOCTL_POLL) { mp_uint_t flags = va_arg(vargs, mp_uint_t); ret = 0; int fd = self->fd; // init fds fd_set rfds, wfds, xfds; FD_ZERO(&rfds); FD_ZERO(&wfds); FD_ZERO(&xfds); // set fds if needed if (flags & MP_IOCTL_POLL_RD) { FD_SET(fd, &rfds); // A socked that just closed is available for reading. A call to // recv() returns 0 which is consistent with BSD. if (cc3k_get_fd_closed_state(fd)) { ret |= MP_IOCTL_POLL_RD; } } if (flags & MP_IOCTL_POLL_WR) { FD_SET(fd, &wfds); } if (flags & MP_IOCTL_POLL_HUP) { FD_SET(fd, &xfds); } // call cc3000 select with minimum timeout timeval tv; tv.tv_sec = 0; tv.tv_usec = 1; int nfds = CC3000_EXPORT(select)(fd + 1, &rfds, &wfds, &xfds, &tv); // check for error if (nfds == -1) { *errcode = CC3000_EXPORT(errno); return -1; } // check return of select if (FD_ISSET(fd, &rfds)) { ret |= MP_IOCTL_POLL_RD; } if (FD_ISSET(fd, &wfds)) { ret |= MP_IOCTL_POLL_WR; } if (FD_ISSET(fd, &xfds)) { ret |= MP_IOCTL_POLL_HUP; } } else { *errcode = EINVAL; ret = -1; } va_end(vargs); return ret; } STATIC const mp_stream_p_t cc3k_socket_stream_p = { .ioctl = cc3k_ioctl, .is_text = false, }; STATIC const mp_obj_type_t cc3k_socket_type = { { &mp_type_type }, .name = MP_QSTR_socket, .print = cc3k_socket_print, .stream_p = &cc3k_socket_stream_p, .locals_dict = (mp_obj_t)&cc3k_socket_locals_dict, };