/* * This file is part of the Micro Python project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2021 Artyom Skrobov * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "py/runtime.h" #include "shared-bindings/synthio/MidiTrack.h" #define BITS_PER_SAMPLE (16) #define BYTES_PER_SAMPLE (BITS_PER_SAMPLE / 8) #define MAX_DUR (512) #define SILENCE (0x80) STATIC NORETURN void raise_midi_stream_error(uint32_t pos) { mp_raise_ValueError_varg(translate("Error in MIDI stream at position %d"), pos); } STATIC uint8_t parse_note(const uint8_t *buffer, uint32_t len, uint32_t *pos) { if (*pos + 1 >= len) { raise_midi_stream_error(*pos); } uint8_t note = buffer[(*pos)++]; if (note > 127 || buffer[(*pos)++] > 127) { raise_midi_stream_error(*pos); } return note; } STATIC void terminate_span(synthio_miditrack_obj_t *self, uint16_t *dur) { if (*dur) { self->track[self->total_spans - 1].dur = *dur; *dur = 0; } else { self->total_spans--; } } STATIC void add_span(synthio_miditrack_obj_t *self, const synthio_midi_span_t *span) { self->track = m_renew(synthio_midi_span_t, self->track, self->total_spans, self->total_spans + 1); self->track[self->total_spans++] = *span; } STATIC int find_channel_with_note(const synthio_midi_span_t *span, uint8_t note) { for (int i = 0; i < CIRCUITPY_SYNTHIO_MAX_CHANNELS; i++) { if (span->note[i] == note) { return i; } } return -1; } STATIC void change_span_note(synthio_miditrack_obj_t *self, uint8_t old_note, uint8_t new_note, uint16_t *dur) { synthio_midi_span_t span = self->track[self->total_spans - 1]; int channel = find_channel_with_note(&span, old_note); if (channel != -1) { terminate_span(self, dur); span.note[channel] = new_note; add_span(self, &span); *dur = 0; } } void common_hal_synthio_miditrack_construct(synthio_miditrack_obj_t *self, const uint8_t *buffer, uint32_t len, uint32_t tempo, uint32_t sample_rate) { synthio_midi_span_t initial = { 0, {[0 ... (CIRCUITPY_SYNTHIO_MAX_CHANNELS - 1)] = SILENCE} }; self->sample_rate = sample_rate; self->track = m_malloc(sizeof(synthio_midi_span_t), false); self->next_span = 0; self->total_spans = 1; *self->track = initial; uint16_t dur = 0; uint32_t pos = 0; while (pos < len) { uint8_t c; uint32_t delta = 0; do { c = buffer[pos++]; delta <<= 7; delta |= c & 0x7f; } while ((c & 0x80) && (pos < len)); if (c & 0x80) { raise_midi_stream_error(pos); } // dur is carried over here so that if a note on/off message doesn't actually produce a change, the // underlying "span" is extended. Otherwise, it is zeroed out in the call to `terminate_span`. dur += delta * sample_rate / tempo; switch (buffer[pos++] >> 4) { case 8: { // Note Off uint8_t note = parse_note(buffer, len, &pos); change_span_note(self, note, SILENCE, &dur); break; } case 9: { // Note On uint8_t note = parse_note(buffer, len, &pos); change_span_note(self, SILENCE, note, &dur); break; } case 10: case 11: case 14: // two data bytes to ignore parse_note(buffer, len, &pos); break; case 12: case 13: // one data byte to ignore if (pos >= len || buffer[pos++] > 127) { raise_midi_stream_error(pos); } break; case 15: // the full syntax is too complicated, just assume it's "End of Track" event pos = len; break; default: // invalid event raise_midi_stream_error(pos); } } terminate_span(self, &dur); uint16_t max_dur = 0; for (int i = 0; i < self->total_spans; i++) { max_dur = MAX(self->track[i].dur, max_dur); } self->buffer_length = MIN(MAX_DUR, max_dur) * BYTES_PER_SAMPLE; self->buffer = m_malloc(self->buffer_length, false); } void common_hal_synthio_miditrack_deinit(synthio_miditrack_obj_t *self) { m_del(uint8_t, self->buffer, self->buffer_length); self->buffer = NULL; m_del(synthio_midi_span_t, self->track, self->total_spans + 1); self->track = NULL; } bool common_hal_synthio_miditrack_deinited(synthio_miditrack_obj_t *self) { return self->buffer == NULL; } uint32_t common_hal_synthio_miditrack_get_sample_rate(synthio_miditrack_obj_t *self) { return self->sample_rate; } uint8_t common_hal_synthio_miditrack_get_bits_per_sample(synthio_miditrack_obj_t *self) { return BITS_PER_SAMPLE; } uint8_t common_hal_synthio_miditrack_get_channel_count(synthio_miditrack_obj_t *self) { return 1; } void synthio_miditrack_reset_buffer(synthio_miditrack_obj_t *self, bool single_channel_output, uint8_t channel) { self->remaining_dur = 0; self->next_span = 0; } STATIC const uint16_t notes[] = {8372, 8870, 9397, 9956, 10548, 11175, 11840, 12544, 13290, 14080, 14917, 15804}; // 9th octave static int count_active_channels(synthio_midi_span_t *span) { int result = 0; for (int i = 0; i < CIRCUITPY_SYNTHIO_MAX_CHANNELS; i++) { if (span->note[i] != SILENCE) { result += 1; } } return result; } audioio_get_buffer_result_t synthio_miditrack_get_buffer(synthio_miditrack_obj_t *self, bool single_channel_output, uint8_t channel, uint8_t **buffer, uint32_t *buffer_length) { synthio_midi_span_t span = self->track[self->next_span - !!self->remaining_dur]; if (self->remaining_dur == 0) { if (self->next_span >= self->total_spans) { *buffer_length = 0; return GET_BUFFER_DONE; } self->next_span++; self->remaining_dur = span.dur; } uint16_t dur = MIN(MAX_DUR, self->remaining_dur); self->remaining_dur -= dur; *buffer_length = dur * BYTES_PER_SAMPLE; memset(self->buffer, 0, *buffer_length); int32_t sample_rate = self->sample_rate; int active_channels = count_active_channels(&span); if (active_channels) { int16_t loudness = 0x3fff / (1 + active_channels); for (int chan = 0; chan < CIRCUITPY_SYNTHIO_MAX_CHANNELS; chan++) { if (span.note[chan] == SILENCE) { self->accum[chan] = 0; continue; } uint8_t octave = span.note[chan] / 12; uint16_t base_freq = notes[span.note[chan] % 12]; uint32_t accum = self->accum[chan]; uint32_t rate = base_freq * 2; for (uint16_t i = 0; i < dur; i++) { accum += rate; int16_t semiperiod = (accum / sample_rate) >> (10 - octave); self->buffer[i] += semiperiod % 2 ? loudness : -loudness; } self->accum[chan] = accum; } } *buffer = (uint8_t *)self->buffer; return (self->remaining_dur == 0 && self->next_span >= self->total_spans) ? GET_BUFFER_DONE : GET_BUFFER_MORE_DATA; } void synthio_miditrack_get_buffer_structure(synthio_miditrack_obj_t *self, bool single_channel_output, bool *single_buffer, bool *samples_signed, uint32_t *max_buffer_length, uint8_t *spacing) { *single_buffer = true; *samples_signed = true; *max_buffer_length = self->buffer_length; *spacing = 1; }