/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2016 Damien P. George * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "shared-bindings/microcontroller/__init__.h" #include "shared-bindings/busio/UART.h" #include "mpconfigport.h" #include "lib/utils/interrupt_char.h" #include "py/gc.h" #include "py/mperrno.h" #include "py/runtime.h" #include "py/stream.h" #include "supervisor/shared/translate.h" #include "supervisor/shared/tick.h" #include "hpl_sercom_config.h" #include "peripheral_clk_config.h" #include "hal/include/hal_gpio.h" #include "hal/include/hal_usart_async.h" #include "hal/include/hpl_usart_async.h" #include "samd/sercom.h" // Do-nothing callback needed so that usart_async code will enable rx interrupts. // See comment below re usart_async_register_callback() static void usart_async_rxc_callback(const struct usart_async_descriptor *const descr) { // Nothing needs to be done by us. } void common_hal_busio_uart_construct(busio_uart_obj_t *self, const mcu_pin_obj_t * tx, const mcu_pin_obj_t * rx, uint32_t baudrate, uint8_t bits, uart_parity_t parity, uint8_t stop, mp_float_t timeout, uint16_t receiver_buffer_size) { Sercom* sercom = NULL; uint8_t sercom_index = 255; // Unset index uint32_t rx_pinmux = 0; uint8_t rx_pad = 255; // Unset pad uint32_t tx_pinmux = 0; uint8_t tx_pad = 255; // Unset pad if (bits > 8) { mp_raise_NotImplementedError(translate("bytes > 8 bits not supported")); } bool have_tx = tx != mp_const_none; bool have_rx = rx != mp_const_none; if (!have_tx && !have_rx) { mp_raise_ValueError(translate("tx and rx cannot both be None")); } self->baudrate = baudrate; self->character_bits = bits; self->timeout_ms = timeout * 1000; // This assignment is only here because the usart_async routines take a *const argument. struct usart_async_descriptor * const usart_desc_p = (struct usart_async_descriptor * const) &self->usart_desc; for (int i = 0; i < NUM_SERCOMS_PER_PIN; i++) { Sercom* potential_sercom = NULL; if (have_tx) { sercom_index = tx->sercom[i].index; if (sercom_index >= SERCOM_INST_NUM) { continue; } potential_sercom = sercom_insts[sercom_index]; #ifdef SAMD21 if (potential_sercom->USART.CTRLA.bit.ENABLE != 0 || !(tx->sercom[i].pad == 0 || tx->sercom[i].pad == 2)) { continue; } #endif #ifdef SAMD51 if (potential_sercom->USART.CTRLA.bit.ENABLE != 0 || !(tx->sercom[i].pad == 0)) { continue; } #endif tx_pinmux = PINMUX(tx->number, (i == 0) ? MUX_C : MUX_D); tx_pad = tx->sercom[i].pad; if (rx == mp_const_none) { sercom = potential_sercom; break; } } for (int j = 0; j < NUM_SERCOMS_PER_PIN; j++) { if (((!have_tx && rx->sercom[j].index < SERCOM_INST_NUM && sercom_insts[rx->sercom[j].index]->USART.CTRLA.bit.ENABLE == 0) || sercom_index == rx->sercom[j].index) && rx->sercom[j].pad != tx_pad) { rx_pinmux = PINMUX(rx->number, (j == 0) ? MUX_C : MUX_D); rx_pad = rx->sercom[j].pad; sercom = sercom_insts[rx->sercom[j].index]; sercom_index = rx->sercom[j].index; break; } } if (sercom != NULL) { break; } } if (sercom == NULL) { mp_raise_ValueError(translate("Invalid pins")); } if (!have_tx) { tx_pad = 0; if (rx_pad == 0) { tx_pad = 2; } } if (!have_rx) { rx_pad = (tx_pad + 1) % 4; } // Set up clocks on SERCOM. samd_peripherals_sercom_clock_init(sercom, sercom_index); if (rx && receiver_buffer_size > 0) { self->buffer_length = receiver_buffer_size; // Initially allocate the UART's buffer in the long-lived part of the // heap. UARTs are generally long-lived objects, but the "make long- // lived" machinery is incapable of moving internal pointers like // self->buffer, so do it manually. (However, as long as internal // pointers like this are NOT moved, allocating the buffer // in the long-lived pool is not strictly necessary) self->buffer = (uint8_t *) gc_alloc(self->buffer_length * sizeof(uint8_t), false, true); if (self->buffer == NULL) { common_hal_busio_uart_deinit(self); mp_raise_msg(&mp_type_MemoryError, translate("Failed to allocate RX buffer")); } } else { self->buffer_length = 0; self->buffer = NULL; } if (usart_async_init(usart_desc_p, sercom, self->buffer, self->buffer_length, NULL) != ERR_NONE) { mp_raise_ValueError(translate("Could not initialize UART")); } // usart_async_init() sets a number of defaults based on a prototypical SERCOM // which don't necessarily match what we need. After calling it, set the values // specific to this instantiation of UART. // Set pads computed for this SERCOM. // TXPO: // 0x0: TX pad 0; no RTS/CTS // 0x1: TX pad 2; no RTS/CTS // 0x2: TX pad 0; RTS: pad 2, CTS: pad 3 (not used by us right now) // So divide by 2 to map pad to value. // RXPO: // 0x0: RX pad 0 // 0x1: RX pad 1 // 0x2: RX pad 2 // 0x3: RX pad 3 // Doing a group mask and set of the registers saves 60 bytes over setting the bitfields individually. sercom->USART.CTRLA.reg &= ~(SERCOM_USART_CTRLA_TXPO_Msk | SERCOM_USART_CTRLA_RXPO_Msk | SERCOM_USART_CTRLA_FORM_Msk); sercom->USART.CTRLA.reg |= SERCOM_USART_CTRLA_TXPO(tx_pad / 2) | SERCOM_USART_CTRLA_RXPO(rx_pad) | (parity == PARITY_NONE ? 0 : SERCOM_USART_CTRLA_FORM(1)); // Enable tx and/or rx based on whether the pins were specified. // CHSIZE is 0 for 8 bits, 5, 6, 7 for 5, 6, 7 bits. 1 for 9 bits, but we don't support that. sercom->USART.CTRLB.reg &= ~(SERCOM_USART_CTRLB_TXEN | SERCOM_USART_CTRLB_RXEN | SERCOM_USART_CTRLB_PMODE | SERCOM_USART_CTRLB_SBMODE | SERCOM_USART_CTRLB_CHSIZE_Msk); sercom->USART.CTRLB.reg |= (have_tx ? SERCOM_USART_CTRLB_TXEN : 0) | (have_rx ? SERCOM_USART_CTRLB_RXEN : 0) | (parity == PARITY_ODD ? SERCOM_USART_CTRLB_PMODE : 0) | (stop > 1 ? SERCOM_USART_CTRLB_SBMODE : 0) | SERCOM_USART_CTRLB_CHSIZE(bits % 8); // Set baud rate common_hal_busio_uart_set_baudrate(self, baudrate); // Turn on rx interrupt handling. The UART async driver has its own set of internal callbacks, // which are set up by uart_async_init(). These in turn can call user-specified callbacks. // In fact, the actual interrupts are not enabled unless we set up a user-specified callback. // This is confusing. It's explained in the Atmel START User Guide -> Implementation Description -> // Different read function behavior in some asynchronous drivers. As of this writing: // http://start.atmel.com/static/help/index.html?GUID-79201A5A-226F-4FBB-B0B8-AB0BE0554836 // Look at the ASFv4 code example for async USART. usart_async_register_callback(usart_desc_p, USART_ASYNC_RXC_CB, usart_async_rxc_callback); if (have_tx) { gpio_set_pin_direction(tx->number, GPIO_DIRECTION_OUT); gpio_set_pin_pull_mode(tx->number, GPIO_PULL_OFF); gpio_set_pin_function(tx->number, tx_pinmux); self->tx_pin = tx->number; claim_pin(tx); } else { self->tx_pin = NO_PIN; } if (have_rx) { gpio_set_pin_direction(rx->number, GPIO_DIRECTION_IN); gpio_set_pin_pull_mode(rx->number, GPIO_PULL_OFF); gpio_set_pin_function(rx->number, rx_pinmux); self->rx_pin = rx->number; claim_pin(rx); } else { self->rx_pin = NO_PIN; } usart_async_enable(usart_desc_p); } bool common_hal_busio_uart_deinited(busio_uart_obj_t *self) { return self->rx_pin == NO_PIN && self->tx_pin == NO_PIN; } void common_hal_busio_uart_deinit(busio_uart_obj_t *self) { if (common_hal_busio_uart_deinited(self)) { return; } // This assignment is only here because the usart_async routines take a *const argument. struct usart_async_descriptor * const usart_desc_p = (struct usart_async_descriptor * const) &self->usart_desc; usart_async_disable(usart_desc_p); usart_async_deinit(usart_desc_p); reset_pin_number(self->rx_pin); reset_pin_number(self->tx_pin); self->rx_pin = NO_PIN; self->tx_pin = NO_PIN; } // Read characters. size_t common_hal_busio_uart_read(busio_uart_obj_t *self, uint8_t *data, size_t len, int *errcode) { if (self->rx_pin == NO_PIN) { mp_raise_ValueError(translate("No RX pin")); } // This assignment is only here because the usart_async routines take a *const argument. struct usart_async_descriptor * const usart_desc_p = (struct usart_async_descriptor * const) &self->usart_desc; if (len == 0) { // Nothing to read. return 0; } struct io_descriptor *io; usart_async_get_io_descriptor(usart_desc_p, &io); size_t total_read = 0; uint64_t start_ticks = supervisor_ticks_ms64(); // Busy-wait until timeout or until we've read enough chars. while (supervisor_ticks_ms64() - start_ticks <= self->timeout_ms) { // Read as many chars as we can right now, up to len. size_t num_read = io_read(io, data, len); // Advance pointer in data buffer, and decrease how many chars left to read. data += num_read; len -= num_read; total_read += num_read; if (len == 0) { // Don't need to read any more: data buf is full. break; } if (num_read > 0) { // Reset the timeout on every character read. start_ticks = supervisor_ticks_ms64(); } RUN_BACKGROUND_TASKS; // Allow user to break out of a timeout with a KeyboardInterrupt. if (mp_hal_is_interrupted()) { break; } // If we are zero timeout, make sure we don't loop again (in the event // we read in under 1ms) if (self->timeout_ms == 0) { break; } } if (total_read == 0) { *errcode = EAGAIN; return MP_STREAM_ERROR; } return total_read; } // Write characters. size_t common_hal_busio_uart_write(busio_uart_obj_t *self, const uint8_t *data, size_t len, int *errcode) { if (self->tx_pin == NO_PIN) { mp_raise_ValueError(translate("No TX pin")); } // This assignment is only here because the usart_async routines take a *const argument. struct usart_async_descriptor * const usart_desc_p = (struct usart_async_descriptor * const) &self->usart_desc; struct io_descriptor *io; usart_async_get_io_descriptor(usart_desc_p, &io); // Start writing characters. This is non-blocking and will // return immediately after setting up the write. if (io_write(io, data, len) < 0) { *errcode = MP_EAGAIN; return MP_STREAM_ERROR; } // Busy-wait until all characters transmitted. struct usart_async_status async_status; while (true) { usart_async_get_status(usart_desc_p, &async_status); if (async_status.txcnt >= len) { break; } RUN_BACKGROUND_TASKS; } return len; } uint32_t common_hal_busio_uart_get_baudrate(busio_uart_obj_t *self) { return self->baudrate; } void common_hal_busio_uart_set_baudrate(busio_uart_obj_t *self, uint32_t baudrate) { // This assignment is only here because the usart_async routines take a *const argument. struct usart_async_descriptor * const usart_desc_p = (struct usart_async_descriptor * const) &self->usart_desc; usart_async_set_baud_rate(usart_desc_p, // Samples and ARITHMETIC vs FRACTIONAL must correspond to USART_SAMPR in // hpl_sercom_config.h. _usart_async_calculate_baud_rate(baudrate, // e.g. 9600 baud PROTOTYPE_SERCOM_USART_ASYNC_CLOCK_FREQUENCY, 16, // samples USART_BAUDRATE_ASYNCH_ARITHMETIC, 0 // fraction - not used for ARITHMETIC )); self->baudrate = baudrate; } mp_float_t common_hal_busio_uart_get_timeout(busio_uart_obj_t *self) { return (mp_float_t) (self->timeout_ms / 1000.0f); } void common_hal_busio_uart_set_timeout(busio_uart_obj_t *self, mp_float_t timeout) { self->timeout_ms = timeout * 1000; } uint32_t common_hal_busio_uart_rx_characters_available(busio_uart_obj_t *self) { // This assignment is only here because the usart_async routines take a *const argument. struct usart_async_descriptor * const usart_desc_p = (struct usart_async_descriptor * const) &self->usart_desc; struct usart_async_status async_status; usart_async_get_status(usart_desc_p, &async_status); return async_status.rxcnt; } void common_hal_busio_uart_clear_rx_buffer(busio_uart_obj_t *self) { // This assignment is only here because the usart_async routines take a *const argument. struct usart_async_descriptor * const usart_desc_p = (struct usart_async_descriptor * const) &self->usart_desc; usart_async_flush_rx_buffer(usart_desc_p); } // True if there are no characters still to be written. bool common_hal_busio_uart_ready_to_tx(busio_uart_obj_t *self) { if (self->tx_pin == NO_PIN) { return false; } // This assignment is only here because the usart_async routines take a *const argument. struct usart_async_descriptor * const usart_desc_p = (struct usart_async_descriptor * const) &self->usart_desc; struct usart_async_status async_status; usart_async_get_status(usart_desc_p, &async_status); return !(async_status.flags & USART_ASYNC_STATUS_BUSY); }