/* * This file is part of the Micro Python project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2015 Josef Gajdusek * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include #include "py/nlr.h" #include "py/obj.h" #include "py/runtime.h" #include "timeutils.h" #include "user_interface.h" #include "modpyb.h" typedef struct _pyb_rtc_obj_t { mp_obj_base_t base; } pyb_rtc_obj_t; #define MEM_MAGIC 0x75507921 #define MEM_DELTA_ADDR 64 #define MEM_CAL_ADDR (MEM_DELTA_ADDR + 2) #define MEM_USER_MAGIC_ADDR (MEM_CAL_ADDR + 1) #define MEM_USER_LEN_ADDR (MEM_USER_MAGIC_ADDR + 1) #define MEM_USER_DATA_ADDR (MEM_USER_LEN_ADDR + 1) #define MEM_USER_MAXLEN (512 - (MEM_USER_DATA_ADDR - MEM_DELTA_ADDR) * 4) // singleton RTC object STATIC const pyb_rtc_obj_t pyb_rtc_obj = {{&pyb_rtc_type}}; // ALARM0 state uint32_t pyb_rtc_alarm0_wake; // see MACHINE_WAKE_xxx constants uint64_t pyb_rtc_alarm0_expiry; // in microseconds void mp_hal_rtc_init(void) { uint32_t magic; system_rtc_mem_read(MEM_USER_MAGIC_ADDR, &magic, sizeof(magic)); if (magic != MEM_MAGIC) { magic = MEM_MAGIC; system_rtc_mem_write(MEM_USER_MAGIC_ADDR, &magic, sizeof(magic)); uint32_t cal = system_rtc_clock_cali_proc(); int64_t delta = 0; system_rtc_mem_write(MEM_CAL_ADDR, &cal, sizeof(cal)); system_rtc_mem_write(MEM_DELTA_ADDR, &delta, sizeof(delta)); uint32_t len = 0; system_rtc_mem_write(MEM_USER_LEN_ADDR, &len, sizeof(len)); } // reset ALARM0 state pyb_rtc_alarm0_wake = 0; pyb_rtc_alarm0_expiry = 0; } STATIC mp_obj_t pyb_rtc_make_new(const mp_obj_type_t *type, mp_uint_t n_args, mp_uint_t n_kw, const mp_obj_t *args) { // check arguments mp_arg_check_num(n_args, n_kw, 0, 0, false); // return constant object return (mp_obj_t)&pyb_rtc_obj; } STATIC uint64_t pyb_rtc_raw_us(uint64_t cal) { return (system_get_rtc_time() * cal) >> 12; }; void pyb_rtc_set_us_since_2000(uint64_t nowus) { uint32_t cal = system_rtc_clock_cali_proc(); int64_t delta = nowus - pyb_rtc_raw_us(cal); // As the calibration value jitters quite a bit, to make the // clock at least somewhat practially usable, we need to store it system_rtc_mem_write(MEM_CAL_ADDR, &cal, sizeof(cal)); system_rtc_mem_write(MEM_DELTA_ADDR, &delta, sizeof(delta)); }; uint64_t pyb_rtc_get_us_since_2000() { uint32_t cal; int64_t delta; system_rtc_mem_read(MEM_CAL_ADDR, &cal, sizeof(cal)); system_rtc_mem_read(MEM_DELTA_ADDR, &delta, sizeof(delta)); return pyb_rtc_raw_us(cal) + delta; }; STATIC mp_obj_t pyb_rtc_datetime(mp_uint_t n_args, const mp_obj_t *args) { if (n_args == 1) { // Get time uint64_t msecs = pyb_rtc_get_us_since_2000() / 1000; timeutils_struct_time_t tm; timeutils_seconds_since_2000_to_struct_time(msecs / 1000, &tm); mp_obj_t tuple[8] = { mp_obj_new_int(tm.tm_year), mp_obj_new_int(tm.tm_mon), mp_obj_new_int(tm.tm_mday), mp_obj_new_int(tm.tm_wday), mp_obj_new_int(tm.tm_hour), mp_obj_new_int(tm.tm_min), mp_obj_new_int(tm.tm_sec), mp_obj_new_int(msecs % 1000) }; return mp_obj_new_tuple(8, tuple); } else { // Set time mp_obj_t *items; mp_obj_get_array_fixed_n(args[1], 8, &items); pyb_rtc_set_us_since_2000( ((uint64_t)timeutils_seconds_since_2000( mp_obj_get_int(items[0]), mp_obj_get_int(items[1]), mp_obj_get_int(items[2]), mp_obj_get_int(items[4]), mp_obj_get_int(items[5]), mp_obj_get_int(items[6])) * 1000 + mp_obj_get_int(items[7])) * 1000); return mp_const_none; } } STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_rtc_datetime_obj, 1, 2, pyb_rtc_datetime); STATIC mp_obj_t pyb_rtc_memory(mp_uint_t n_args, const mp_obj_t *args) { uint8_t rtcram[MEM_USER_MAXLEN]; uint32_t len; if (n_args == 1) { // read RTC memory system_rtc_mem_read(MEM_USER_LEN_ADDR, &len, sizeof(len)); system_rtc_mem_read(MEM_USER_DATA_ADDR, rtcram, len + (4 - len % 4)); return mp_obj_new_bytes(rtcram, len); } else { // write RTC memory mp_buffer_info_t bufinfo; mp_get_buffer_raise(args[1], &bufinfo, MP_BUFFER_READ); if (bufinfo.len > MEM_USER_MAXLEN) { nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, "buffer too long")); } len = bufinfo.len; system_rtc_mem_write(MEM_USER_LEN_ADDR, &len, sizeof(len)); int i = 0; for (; i < bufinfo.len; i++) { rtcram[i] = ((uint8_t *)bufinfo.buf)[i]; } system_rtc_mem_write(MEM_USER_DATA_ADDR, rtcram, len + (4 - len % 4)); return mp_const_none; } } STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_rtc_memory_obj, 1, 2, pyb_rtc_memory); STATIC mp_obj_t pyb_rtc_alarm(mp_obj_t self_in, mp_obj_t alarm_id, mp_obj_t time_in) { (void)self_in; // unused // check we want alarm0 if (mp_obj_get_int(alarm_id) != 0) { nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, "invalid alarm")); } // set expiry time (in microseconds) pyb_rtc_alarm0_expiry = pyb_rtc_get_us_since_2000() + mp_obj_get_int(time_in) * 1000; return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_3(pyb_rtc_alarm_obj, pyb_rtc_alarm); STATIC mp_obj_t pyb_rtc_irq(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { enum { ARG_trigger, ARG_wake }; static const mp_arg_t allowed_args[] = { { MP_QSTR_trigger, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} }, { MP_QSTR_wake, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} }, }; mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); // check we want alarm0 if (args[ARG_trigger].u_int != 0) { nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, "invalid alarm")); } // set the wake value pyb_rtc_alarm0_wake = args[ARG_wake].u_int; return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_rtc_irq_obj, 1, pyb_rtc_irq); STATIC const mp_map_elem_t pyb_rtc_locals_dict_table[] = { { MP_OBJ_NEW_QSTR(MP_QSTR_datetime), (mp_obj_t)&pyb_rtc_datetime_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_memory), (mp_obj_t)&pyb_rtc_memory_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_alarm), (mp_obj_t)&pyb_rtc_alarm_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_irq), (mp_obj_t)&pyb_rtc_irq_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_ALARM0), MP_OBJ_NEW_SMALL_INT(0) }, }; STATIC MP_DEFINE_CONST_DICT(pyb_rtc_locals_dict, pyb_rtc_locals_dict_table); const mp_obj_type_t pyb_rtc_type = { { &mp_type_type }, .name = MP_QSTR_RTC, .make_new = pyb_rtc_make_new, .locals_dict = (mp_obj_t)&pyb_rtc_locals_dict, };