/* * This file is part of the Micro Python project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2013, 2014 Damien P. George * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include <stdint.h> #include <string.h> #include "py/obj.h" #include "py/runtime.h" #include "lib/oofatfs/ff.h" #include "extmod/vfs_fat.h" #include "systick.h" #include "led.h" #include "flash.h" #include "storage.h" #include "irq.h" #if defined(MICROPY_HW_SPIFLASH_SIZE_BITS) #define USE_INTERNAL (0) #else #define USE_INTERNAL (1) #endif #if USE_INTERNAL #if defined(STM32F405xx) || defined(STM32F415xx) || defined(STM32F407xx) #define CACHE_MEM_START_ADDR (0x10000000) // CCM data RAM, 64k #define FLASH_SECTOR_SIZE_MAX (0x10000) // 64k max, size of CCM #define FLASH_MEM_SEG1_START_ADDR (0x08004000) // sector 1 #define FLASH_MEM_SEG1_NUM_BLOCKS (224) // sectors 1,2,3,4: 16k+16k+16k+64k=112k // enable this to get an extra 64k of storage (uses the last sector of the flash) #if 0 #define FLASH_MEM_SEG2_START_ADDR (0x080e0000) // sector 11 #define FLASH_MEM_SEG2_NUM_BLOCKS (128) // sector 11: 128k #endif #elif defined(STM32F401xE) || defined(STM32F411xE) STATIC byte flash_cache_mem[0x4000] __attribute__((aligned(4))); // 16k #define CACHE_MEM_START_ADDR (&flash_cache_mem[0]) #define FLASH_SECTOR_SIZE_MAX (0x4000) // 16k max due to size of cache buffer #define FLASH_MEM_SEG1_START_ADDR (0x08004000) // sector 1 #define FLASH_MEM_SEG1_NUM_BLOCKS (128) // sectors 1,2,3,4: 16k+16k+16k+16k(of 64k)=64k #elif defined(STM32F429xx) #define CACHE_MEM_START_ADDR (0x10000000) // CCM data RAM, 64k #define FLASH_SECTOR_SIZE_MAX (0x10000) // 64k max, size of CCM #define FLASH_MEM_SEG1_START_ADDR (0x08004000) // sector 1 #define FLASH_MEM_SEG1_NUM_BLOCKS (224) // sectors 1,2,3,4: 16k+16k+16k+64k=112k #elif defined(STM32F439xx) #define CACHE_MEM_START_ADDR (0x10000000) // CCM data RAM, 64k #define FLASH_SECTOR_SIZE_MAX (0x10000) // 64k max, size of CCM #define FLASH_MEM_SEG1_START_ADDR (0x08100000) // sector 12 #define FLASH_MEM_SEG1_NUM_BLOCKS (384) // sectors 12,13,14,15,16,17: 16k+16k+16k+16k+64k+64k(of 128k)=192k #define FLASH_MEM_SEG2_START_ADDR (0x08140000) // sector 18 #define FLASH_MEM_SEG2_NUM_BLOCKS (128) // sector 18: 64k(of 128k) #elif defined(STM32F746xx) || defined(STM32F767xx) || defined(STM32F769xx) // The STM32F746 doesn't really have CCRAM, so we use the 64K DTCM for this. #define CACHE_MEM_START_ADDR (0x20000000) // DTCM data RAM, 64k #define FLASH_SECTOR_SIZE_MAX (0x08000) // 32k max #define FLASH_MEM_SEG1_START_ADDR (0x08008000) // sector 1 #define FLASH_MEM_SEG1_NUM_BLOCKS (192) // sectors 1,2,3: 32k+32k+32=96k #elif defined(STM32L476xx) extern uint8_t _flash_fs_start; extern uint8_t _flash_fs_end; // The STM32L476 doesn't have CCRAM, so we use the 32K SRAM2 for this. #define CACHE_MEM_START_ADDR (0x10000000) // SRAM2 data RAM, 32k #define FLASH_SECTOR_SIZE_MAX (0x00800) // 2k max #define FLASH_MEM_SEG1_START_ADDR ((long)&_flash_fs_start) #define FLASH_MEM_SEG1_NUM_BLOCKS ((&_flash_fs_end - &_flash_fs_start) / 512) #else #error "no storage support for this MCU" #endif #if !defined(FLASH_MEM_SEG2_START_ADDR) #define FLASH_MEM_SEG2_START_ADDR (0) // no second segment #define FLASH_MEM_SEG2_NUM_BLOCKS (0) // no second segment #endif #define FLASH_PART1_START_BLOCK (0x100) #define FLASH_PART1_NUM_BLOCKS (FLASH_MEM_SEG1_NUM_BLOCKS + FLASH_MEM_SEG2_NUM_BLOCKS) #define FLASH_FLAG_DIRTY (1) #define FLASH_FLAG_FORCE_WRITE (2) #define FLASH_FLAG_ERASED (4) static bool flash_is_initialised = false; static __IO uint8_t flash_flags = 0; static uint32_t flash_cache_sector_id; static uint32_t flash_cache_sector_start; static uint32_t flash_cache_sector_size; static uint32_t flash_tick_counter_last_write; static void flash_cache_flush(void) { if (flash_flags & FLASH_FLAG_DIRTY) { flash_flags |= FLASH_FLAG_FORCE_WRITE; while (flash_flags & FLASH_FLAG_DIRTY) { NVIC->STIR = FLASH_IRQn; } } } static uint8_t *flash_cache_get_addr_for_write(uint32_t flash_addr) { uint32_t flash_sector_start; uint32_t flash_sector_size; uint32_t flash_sector_id = flash_get_sector_info(flash_addr, &flash_sector_start, &flash_sector_size); if (flash_sector_size > FLASH_SECTOR_SIZE_MAX) { flash_sector_size = FLASH_SECTOR_SIZE_MAX; } if (flash_cache_sector_id != flash_sector_id) { flash_cache_flush(); memcpy((void*)CACHE_MEM_START_ADDR, (const void*)flash_sector_start, flash_sector_size); flash_cache_sector_id = flash_sector_id; flash_cache_sector_start = flash_sector_start; flash_cache_sector_size = flash_sector_size; } flash_flags |= FLASH_FLAG_DIRTY; led_state(PYB_LED_RED, 1); // indicate a dirty cache with LED on flash_tick_counter_last_write = HAL_GetTick(); return (uint8_t*)CACHE_MEM_START_ADDR + flash_addr - flash_sector_start; } static uint8_t *flash_cache_get_addr_for_read(uint32_t flash_addr) { uint32_t flash_sector_start; uint32_t flash_sector_size; uint32_t flash_sector_id = flash_get_sector_info(flash_addr, &flash_sector_start, &flash_sector_size); if (flash_cache_sector_id == flash_sector_id) { // in cache, copy from there return (uint8_t*)CACHE_MEM_START_ADDR + flash_addr - flash_sector_start; } // not in cache, copy straight from flash return (uint8_t*)flash_addr; } #else #include "drivers/memory/spiflash.h" #include "genhdr/pins.h" #define FLASH_PART1_START_BLOCK (0x100) #define FLASH_PART1_NUM_BLOCKS (MICROPY_HW_SPIFLASH_SIZE_BITS / 8 / FLASH_BLOCK_SIZE) static bool flash_is_initialised = false; STATIC const mp_spiflash_t spiflash = { .cs = &MICROPY_HW_SPIFLASH_CS, .spi = { .base = {&mp_machine_soft_spi_type}, .delay_half = MICROPY_PY_MACHINE_SPI_MIN_DELAY, .polarity = 0, .phase = 0, .sck = &MICROPY_HW_SPIFLASH_SCK, .mosi = &MICROPY_HW_SPIFLASH_MOSI, .miso = &MICROPY_HW_SPIFLASH_MISO, }, }; #endif void storage_init(void) { if (!flash_is_initialised) { #if USE_INTERNAL flash_flags = 0; flash_cache_sector_id = 0; flash_tick_counter_last_write = 0; #else mp_spiflash_init((mp_spiflash_t*)&spiflash); #endif flash_is_initialised = true; } #if USE_INTERNAL // Enable the flash IRQ, which is used to also call our storage IRQ handler // It needs to go at a higher priority than all those components that rely on // the flash storage (eg higher than USB MSC). HAL_NVIC_SetPriority(FLASH_IRQn, IRQ_PRI_FLASH, IRQ_SUBPRI_FLASH); HAL_NVIC_EnableIRQ(FLASH_IRQn); #endif } uint32_t storage_get_block_size(void) { return FLASH_BLOCK_SIZE; } uint32_t storage_get_block_count(void) { return FLASH_PART1_START_BLOCK + FLASH_PART1_NUM_BLOCKS; } void storage_irq_handler(void) { #if USE_INTERNAL if (!(flash_flags & FLASH_FLAG_DIRTY)) { return; } // This code uses interrupts to erase the flash /* if (flash_erase_state == 0) { flash_erase_it(flash_cache_sector_start, (const uint32_t*)CACHE_MEM_START_ADDR, flash_cache_sector_size / 4); flash_erase_state = 1; return; } if (flash_erase_state == 1) { // wait for erase // TODO add timeout #define flash_erase_done() (__HAL_FLASH_GET_FLAG(FLASH_FLAG_BSY) == RESET) if (!flash_erase_done()) { return; } flash_erase_state = 2; } */ // This code erases the flash directly, waiting for it to finish if (!(flash_flags & FLASH_FLAG_ERASED)) { flash_erase(flash_cache_sector_start, (const uint32_t*)CACHE_MEM_START_ADDR, flash_cache_sector_size / 4); flash_flags |= FLASH_FLAG_ERASED; return; } // If not a forced write, wait at least 5 seconds after last write to flush // On file close and flash unmount we get a forced write, so we can afford to wait a while if ((flash_flags & FLASH_FLAG_FORCE_WRITE) || sys_tick_has_passed(flash_tick_counter_last_write, 5000)) { // sync the cache RAM buffer by writing it to the flash page flash_write(flash_cache_sector_start, (const uint32_t*)CACHE_MEM_START_ADDR, flash_cache_sector_size / 4); // clear the flash flags now that we have a clean cache flash_flags = 0; // indicate a clean cache with LED off led_state(PYB_LED_RED, 0); } #endif } void storage_flush(void) { #if USE_INTERNAL flash_cache_flush(); #endif } static void build_partition(uint8_t *buf, int boot, int type, uint32_t start_block, uint32_t num_blocks) { buf[0] = boot; if (num_blocks == 0) { buf[1] = 0; buf[2] = 0; buf[3] = 0; } else { buf[1] = 0xff; buf[2] = 0xff; buf[3] = 0xff; } buf[4] = type; if (num_blocks == 0) { buf[5] = 0; buf[6] = 0; buf[7] = 0; } else { buf[5] = 0xff; buf[6] = 0xff; buf[7] = 0xff; } buf[8] = start_block; buf[9] = start_block >> 8; buf[10] = start_block >> 16; buf[11] = start_block >> 24; buf[12] = num_blocks; buf[13] = num_blocks >> 8; buf[14] = num_blocks >> 16; buf[15] = num_blocks >> 24; } #if USE_INTERNAL static uint32_t convert_block_to_flash_addr(uint32_t block) { if (FLASH_PART1_START_BLOCK <= block && block < FLASH_PART1_START_BLOCK + FLASH_PART1_NUM_BLOCKS) { // a block in partition 1 block -= FLASH_PART1_START_BLOCK; if (block < FLASH_MEM_SEG1_NUM_BLOCKS) { return FLASH_MEM_SEG1_START_ADDR + block * FLASH_BLOCK_SIZE; } else if (block < FLASH_MEM_SEG1_NUM_BLOCKS + FLASH_MEM_SEG2_NUM_BLOCKS) { return FLASH_MEM_SEG2_START_ADDR + (block - FLASH_MEM_SEG1_NUM_BLOCKS) * FLASH_BLOCK_SIZE; } // can add more flash segments here if needed, following above pattern } // bad block return -1; } #endif bool storage_read_block(uint8_t *dest, uint32_t block) { //printf("RD %u\n", block); if (block == 0) { // fake the MBR so we can decide on our own partition table for (int i = 0; i < 446; i++) { dest[i] = 0; } build_partition(dest + 446, 0, 0x01 /* FAT12 */, FLASH_PART1_START_BLOCK, FLASH_PART1_NUM_BLOCKS); build_partition(dest + 462, 0, 0, 0, 0); build_partition(dest + 478, 0, 0, 0, 0); build_partition(dest + 494, 0, 0, 0, 0); dest[510] = 0x55; dest[511] = 0xaa; return true; } else { #if USE_INTERNAL // non-MBR block, get data from flash memory, possibly via cache uint32_t flash_addr = convert_block_to_flash_addr(block); if (flash_addr == -1) { // bad block number return false; } uint8_t *src = flash_cache_get_addr_for_read(flash_addr); memcpy(dest, src, FLASH_BLOCK_SIZE); return true; #else // non-MBR block, get data from SPI flash if (block < FLASH_PART1_START_BLOCK || block >= FLASH_PART1_START_BLOCK + FLASH_PART1_NUM_BLOCKS) { // bad block number return false; } // we must disable USB irqs to prevent MSC contention with SPI flash uint32_t basepri = raise_irq_pri(IRQ_PRI_OTG_FS); mp_spiflash_read((mp_spiflash_t*)&spiflash, (block - FLASH_PART1_START_BLOCK) * FLASH_BLOCK_SIZE, FLASH_BLOCK_SIZE, dest); restore_irq_pri(basepri); return true; #endif } } bool storage_write_block(const uint8_t *src, uint32_t block) { //printf("WR %u\n", block); if (block == 0) { // can't write MBR, but pretend we did return true; } else { #if USE_INTERNAL // non-MBR block, copy to cache uint32_t flash_addr = convert_block_to_flash_addr(block); if (flash_addr == -1) { // bad block number return false; } uint8_t *dest = flash_cache_get_addr_for_write(flash_addr); memcpy(dest, src, FLASH_BLOCK_SIZE); return true; #else // non-MBR block, write to SPI flash if (block < FLASH_PART1_START_BLOCK || block >= FLASH_PART1_START_BLOCK + FLASH_PART1_NUM_BLOCKS) { // bad block number return false; } // we must disable USB irqs to prevent MSC contention with SPI flash uint32_t basepri = raise_irq_pri(IRQ_PRI_OTG_FS); int ret = mp_spiflash_write((mp_spiflash_t*)&spiflash, (block - FLASH_PART1_START_BLOCK) * FLASH_BLOCK_SIZE, FLASH_BLOCK_SIZE, src); restore_irq_pri(basepri); return ret == 0; #endif } } mp_uint_t storage_read_blocks(uint8_t *dest, uint32_t block_num, uint32_t num_blocks) { for (size_t i = 0; i < num_blocks; i++) { if (!storage_read_block(dest + i * FLASH_BLOCK_SIZE, block_num + i)) { return 1; // error } } return 0; // success } mp_uint_t storage_write_blocks(const uint8_t *src, uint32_t block_num, uint32_t num_blocks) { for (size_t i = 0; i < num_blocks; i++) { if (!storage_write_block(src + i * FLASH_BLOCK_SIZE, block_num + i)) { return 1; // error } } return 0; // success } /******************************************************************************/ // MicroPython bindings // // Expose the flash as an object with the block protocol. // there is a singleton Flash object STATIC const mp_obj_base_t pyb_flash_obj = {&pyb_flash_type}; STATIC mp_obj_t pyb_flash_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) { // check arguments mp_arg_check_num(n_args, n_kw, 0, 0, false); // return singleton object return (mp_obj_t)&pyb_flash_obj; } STATIC mp_obj_t pyb_flash_readblocks(mp_obj_t self, mp_obj_t block_num, mp_obj_t buf) { mp_buffer_info_t bufinfo; mp_get_buffer_raise(buf, &bufinfo, MP_BUFFER_WRITE); mp_uint_t ret = storage_read_blocks(bufinfo.buf, mp_obj_get_int(block_num), bufinfo.len / FLASH_BLOCK_SIZE); return MP_OBJ_NEW_SMALL_INT(ret); } STATIC MP_DEFINE_CONST_FUN_OBJ_3(pyb_flash_readblocks_obj, pyb_flash_readblocks); STATIC mp_obj_t pyb_flash_writeblocks(mp_obj_t self, mp_obj_t block_num, mp_obj_t buf) { mp_buffer_info_t bufinfo; mp_get_buffer_raise(buf, &bufinfo, MP_BUFFER_READ); mp_uint_t ret = storage_write_blocks(bufinfo.buf, mp_obj_get_int(block_num), bufinfo.len / FLASH_BLOCK_SIZE); return MP_OBJ_NEW_SMALL_INT(ret); } STATIC MP_DEFINE_CONST_FUN_OBJ_3(pyb_flash_writeblocks_obj, pyb_flash_writeblocks); STATIC mp_obj_t pyb_flash_ioctl(mp_obj_t self, mp_obj_t cmd_in, mp_obj_t arg_in) { mp_int_t cmd = mp_obj_get_int(cmd_in); switch (cmd) { case BP_IOCTL_INIT: storage_init(); return MP_OBJ_NEW_SMALL_INT(0); case BP_IOCTL_DEINIT: storage_flush(); return MP_OBJ_NEW_SMALL_INT(0); // TODO properly case BP_IOCTL_SYNC: storage_flush(); return MP_OBJ_NEW_SMALL_INT(0); case BP_IOCTL_SEC_COUNT: return MP_OBJ_NEW_SMALL_INT(storage_get_block_count()); case BP_IOCTL_SEC_SIZE: return MP_OBJ_NEW_SMALL_INT(storage_get_block_size()); default: return mp_const_none; } } STATIC MP_DEFINE_CONST_FUN_OBJ_3(pyb_flash_ioctl_obj, pyb_flash_ioctl); STATIC const mp_map_elem_t pyb_flash_locals_dict_table[] = { { MP_OBJ_NEW_QSTR(MP_QSTR_readblocks), (mp_obj_t)&pyb_flash_readblocks_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_writeblocks), (mp_obj_t)&pyb_flash_writeblocks_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_ioctl), (mp_obj_t)&pyb_flash_ioctl_obj }, }; STATIC MP_DEFINE_CONST_DICT(pyb_flash_locals_dict, pyb_flash_locals_dict_table); const mp_obj_type_t pyb_flash_type = { { &mp_type_type }, .name = MP_QSTR_Flash, .make_new = pyb_flash_make_new, .locals_dict = (mp_obj_t)&pyb_flash_locals_dict, }; void pyb_flash_init_vfs(fs_user_mount_t *vfs) { vfs->base.type = &mp_fat_vfs_type; vfs->flags |= FSUSER_NATIVE | FSUSER_HAVE_IOCTL; vfs->fatfs.drv = vfs; vfs->fatfs.part = 1; // flash filesystem lives on first partition vfs->readblocks[0] = (mp_obj_t)&pyb_flash_readblocks_obj; vfs->readblocks[1] = (mp_obj_t)&pyb_flash_obj; vfs->readblocks[2] = (mp_obj_t)storage_read_blocks; // native version vfs->writeblocks[0] = (mp_obj_t)&pyb_flash_writeblocks_obj; vfs->writeblocks[1] = (mp_obj_t)&pyb_flash_obj; vfs->writeblocks[2] = (mp_obj_t)storage_write_blocks; // native version vfs->u.ioctl[0] = (mp_obj_t)&pyb_flash_ioctl_obj; vfs->u.ioctl[1] = (mp_obj_t)&pyb_flash_obj; }