/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2019 Lucian Copeland for Adafruit Industries * Uses code from Micropython, Copyright (c) 2013-2016 Damien P. George * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include "py/runtime.h" #include "common-hal/pulseio/PWMOut.h" #include "shared-bindings/pulseio/PWMOut.h" #include "supervisor/shared/translate.h" #include "shared-bindings/microcontroller/__init__.h" #include "stm32f4xx_hal.h" #include "common-hal/microcontroller/Pin.h" #define ALL_CLOCKS 0xFFFF STATIC uint8_t reserved_tim[TIM_BANK_ARRAY_LEN]; STATIC uint32_t tim_frequencies[TIM_BANK_ARRAY_LEN]; STATIC bool never_reset_tim[TIM_BANK_ARRAY_LEN]; STATIC void tim_clock_enable(uint16_t mask); STATIC void tim_clock_disable(uint16_t mask); // Get the frequency (in Hz) of the source clock for the given timer. // On STM32F405/407/415/417 there are 2 cases for how the clock freq is set. // If the APB prescaler is 1, then the timer clock is equal to its respective // APB clock. Otherwise (APB prescaler > 1) the timer clock is twice its // respective APB clock. See DM00031020 Rev 4, page 115. STATIC uint32_t timer_get_source_freq(uint32_t tim_id) { uint32_t source, clk_div; if (tim_id == 1 || (8 <= tim_id && tim_id <= 11)) { // TIM{1,8,9,10,11} are on APB2 source = HAL_RCC_GetPCLK2Freq(); clk_div = RCC->CFGR & RCC_CFGR_PPRE2; } else { // TIM{2,3,4,5,6,7,12,13,14} are on APB1 source = HAL_RCC_GetPCLK1Freq(); clk_div = RCC->CFGR & RCC_CFGR_PPRE1; } if (clk_div != 0) { // APB prescaler for this timer is > 1 source *= 2; } return source; } STATIC uint32_t timer_get_internal_duty(uint16_t duty, uint32_t period) { //duty cycle is duty/0xFFFF fraction x (number of pulses per period) return (duty*period) / ((1 << 16) - 1); } STATIC void timer_get_optimal_divisors(uint32_t*period, uint32_t*prescaler, uint32_t frequency, uint32_t source_freq) { //Find the largest possible period supported by this frequency for (int i = 0; i < (1 << 16); i++) { *period = source_freq / (i * frequency); if (*period < (1 << 16) && *period >= 2) { *prescaler = i; break; } } if (*prescaler == 0) { mp_raise_ValueError(translate("Invalid frequency supplied")); } } void pwmout_reset(void) { uint16_t never_reset_mask = 0x00; for (int i = 0; i < TIM_BANK_ARRAY_LEN; i++) { if (!never_reset_tim[i]) { reserved_tim[i] = 0x00; tim_frequencies[i] = 0x00; } else { never_reset_mask |= 1 << i; } } tim_clock_disable(ALL_CLOCKS & ~(never_reset_mask)); } pwmout_result_t common_hal_pulseio_pwmout_construct(pulseio_pwmout_obj_t* self, const mcu_pin_obj_t* pin, uint16_t duty, uint32_t frequency, bool variable_frequency) { TIM_TypeDef * TIMx; uint8_t tim_num = MP_ARRAY_SIZE(mcu_tim_pin_list); bool tim_chan_taken = false; bool tim_taken_f_mismatch = false; bool var_freq_mismatch = false; bool first_time_setup = true; mcu_tim_pin_obj_t l_tim = {0}; for (uint i = 0; i < tim_num; i++) { l_tim = mcu_tim_pin_list[i]; uint8_t l_tim_index = l_tim.tim_index - 1; uint8_t l_tim_channel = l_tim.channel_index - 1; //if pin is same if (l_tim.pin == pin) { //check if the timer has a channel active if (reserved_tim[l_tim_index] != 0) { //is it the same channel? (or all channels reserved by a var-freq) if (reserved_tim[l_tim_index] & 1 << (l_tim_channel)) { tim_chan_taken = true; continue; //keep looking, might be another viable option } //If the frequencies are the same it's ok if (tim_frequencies[l_tim_index] != frequency) { tim_taken_f_mismatch = true; continue; //keep looking } //you can't put a variable frequency on a partially reserved timer if (variable_frequency) { var_freq_mismatch = true; continue; //keep looking } first_time_setup = false; //skip setting up the timer } //No problems taken, so set it up self->tim = &l_tim; break; } } //handle valid/invalid timer instance if (self->tim != NULL) { //create instance TIMx = mcu_tim_banks[self->tim->tim_index - 1]; //reserve timer/channel if (variable_frequency) { reserved_tim[self->tim->tim_index - 1] = 0x0F; } else { reserved_tim[self->tim->tim_index - 1] |= 1 << (self->tim->channel_index - 1); } tim_frequencies[self->tim->tim_index - 1] = frequency; } else { //no match found if (tim_chan_taken) { mp_raise_ValueError(translate("No more timers available on this pin.")); } else if (tim_taken_f_mismatch) { mp_raise_ValueError(translate("Frequency must match existing PWMOut using this timer")); } else if (var_freq_mismatch) { mp_raise_ValueError(translate("Cannot vary frequency on a timer that is already in use")); } else { mp_raise_ValueError(translate("Invalid pins")); } } GPIO_InitTypeDef GPIO_InitStruct = {0}; GPIO_InitStruct.Pin = pin_mask(pin->number); GPIO_InitStruct.Mode = GPIO_MODE_AF_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH; GPIO_InitStruct.Alternate = self->tim->altfn_index; HAL_GPIO_Init(pin_port(pin->port), &GPIO_InitStruct); tim_clock_enable(1 << (self->tim->tim_index - 1)); //translate channel into handle value self->channel = 4 * (self->tim->channel_index - 1); uint32_t prescaler = 0; //prescaler is 15 bit uint32_t period = 0; //period is 16 bit timer_get_optimal_divisors(&period, &prescaler, frequency, timer_get_source_freq(self->tim->tim_index)); //Timer init self->handle.Instance = TIMx; self->handle.Init.Period = period - 1; self->handle.Init.Prescaler = prescaler - 1; self->handle.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1; self->handle.Init.CounterMode = TIM_COUNTERMODE_UP; self->handle.Init.RepetitionCounter = 0; //only run init if this is the first instance of this timer if (first_time_setup) { if (HAL_TIM_PWM_Init(&self->handle) != HAL_OK) { mp_raise_ValueError(translate("Could not initialize timer")); } } //Channel/PWM init self->chan_handle.OCMode = TIM_OCMODE_PWM1; self->chan_handle.Pulse = timer_get_internal_duty(duty, period); self->chan_handle.OCPolarity = TIM_OCPOLARITY_LOW; self->chan_handle.OCFastMode = TIM_OCFAST_DISABLE; self->chan_handle.OCNPolarity = TIM_OCNPOLARITY_LOW; // needed for TIM1 and TIM8 self->chan_handle.OCIdleState = TIM_OCIDLESTATE_SET; // needed for TIM1 and TIM8 self->chan_handle.OCNIdleState = TIM_OCNIDLESTATE_SET; // needed for TIM1 and TIM8 if (HAL_TIM_PWM_ConfigChannel(&self->handle, &self->chan_handle, self->channel) != HAL_OK) { mp_raise_ValueError(translate("Could not initialize channel")); } if (HAL_TIM_PWM_Start(&self->handle, self->channel) != HAL_OK) { mp_raise_ValueError(translate("Could not start PWM")); } self->variable_frequency = variable_frequency; self->frequency = frequency; self->duty_cycle = duty; self->period = period; return PWMOUT_OK; } void common_hal_pulseio_pwmout_never_reset(pulseio_pwmout_obj_t *self) { for (size_t i = 0; i < TIM_BANK_ARRAY_LEN; i++) { if (mcu_tim_banks[i] == self->handle.Instance) { never_reset_tim[i] = true; never_reset_pin_number(self->tim->pin->port, self->tim->pin->number); break; } } } void common_hal_pulseio_pwmout_reset_ok(pulseio_pwmout_obj_t *self) { for(size_t i = 0; i < TIM_BANK_ARRAY_LEN; i++) { if (mcu_tim_banks[i] == self->handle.Instance) { never_reset_tim[i] = false; break; } } } bool common_hal_pulseio_pwmout_deinited(pulseio_pwmout_obj_t* self) { return self->tim == mp_const_none; } void common_hal_pulseio_pwmout_deinit(pulseio_pwmout_obj_t* self) { if (common_hal_pulseio_pwmout_deinited(self)) { return; } //var freq shuts down entire timer, others just their channel if (self->variable_frequency) { reserved_tim[self->tim->tim_index - 1] = 0x00; } else { reserved_tim[self->tim->tim_index - 1] &= ~(1 << self->tim->channel_index); HAL_TIM_PWM_Stop(&self->handle, self->channel); } reset_pin_number(self->tim->pin->port,self->tim->pin->number); self->tim = mp_const_none; //if reserved timer has no active channels, we can disable it if (!reserved_tim[self->tim->tim_index - 1]) { tim_frequencies[self->tim->tim_index - 1] = 0x00; tim_clock_disable(1 << (self->tim->tim_index - 1)); } } void common_hal_pulseio_pwmout_set_duty_cycle(pulseio_pwmout_obj_t* self, uint16_t duty) { uint32_t internal_duty_cycle = timer_get_internal_duty(duty, self->period); __HAL_TIM_SET_COMPARE(&self->handle, self->channel, internal_duty_cycle); self->duty_cycle = duty; } uint16_t common_hal_pulseio_pwmout_get_duty_cycle(pulseio_pwmout_obj_t* self) { return self->duty_cycle; } void common_hal_pulseio_pwmout_set_frequency(pulseio_pwmout_obj_t* self, uint32_t frequency) { //don't halt setup for the same frequency if (frequency == self->frequency) { return; } uint32_t prescaler = 0; uint32_t period = 0; timer_get_optimal_divisors(&period, &prescaler, frequency, timer_get_source_freq(self->tim->tim_index)); //shut down HAL_TIM_PWM_Stop(&self->handle, self->channel); //Only change altered values self->handle.Init.Period = period - 1; self->handle.Init.Prescaler = prescaler - 1; //restart everything, adjusting for new speed if (HAL_TIM_PWM_Init(&self->handle) != HAL_OK) { mp_raise_ValueError(translate("Could not re-init timer")); } self->chan_handle.Pulse = timer_get_internal_duty(self->duty_cycle, period); if (HAL_TIM_PWM_ConfigChannel(&self->handle, &self->chan_handle, self->channel) != HAL_OK) { mp_raise_ValueError(translate("Could not re-init channel")); } if (HAL_TIM_PWM_Start(&self->handle, self->channel) != HAL_OK) { mp_raise_ValueError(translate("Could not restart PWM")); } tim_frequencies[self->tim->tim_index - 1] = frequency; self->frequency = frequency; self->period = period; } uint32_t common_hal_pulseio_pwmout_get_frequency(pulseio_pwmout_obj_t* self) { return self->frequency; } bool common_hal_pulseio_pwmout_get_variable_frequency(pulseio_pwmout_obj_t* self) { return self->variable_frequency; } STATIC void tim_clock_enable(uint16_t mask) { #ifdef TIM1 if (mask & (1 << 0)) { __HAL_RCC_TIM1_CLK_ENABLE(); } #endif #ifdef TIM2 if (mask & (1 << 1)) { __HAL_RCC_TIM2_CLK_ENABLE(); } #endif #ifdef TIM3 if (mask & (1 << 2)) { __HAL_RCC_TIM3_CLK_ENABLE(); } #endif #ifdef TIM4 if (mask & (1 << 3)) { __HAL_RCC_TIM4_CLK_ENABLE(); } #endif #ifdef TIM5 if (mask & (1 << 4)) { __HAL_RCC_TIM5_CLK_ENABLE(); } #endif //6 and 7 are reserved ADC timers #ifdef TIM8 if (mask & (1 << 7)) { __HAL_RCC_TIM8_CLK_ENABLE(); } #endif #ifdef TIM9 if (mask & (1 << 8)) { __HAL_RCC_TIM9_CLK_ENABLE(); } #endif #ifdef TIM10 if (mask & (1 << 9)) { __HAL_RCC_TIM10_CLK_ENABLE(); } #endif #ifdef TIM11 if (mask & (1 << 10)) { __HAL_RCC_TIM11_CLK_ENABLE(); } #endif #ifdef TIM12 if (mask & (1 << 11)) { __HAL_RCC_TIM12_CLK_ENABLE(); } #endif #ifdef TIM13 if (mask & (1 << 12)) { __HAL_RCC_TIM13_CLK_ENABLE(); } #endif #ifdef TIM14 if (mask & (1 << 13)) { __HAL_RCC_TIM14_CLK_ENABLE(); } #endif } STATIC void tim_clock_disable(uint16_t mask) { #ifdef TIM1 if (mask & (1 << 0)) { __HAL_RCC_TIM1_CLK_DISABLE(); } #endif #ifdef TIM2 if (mask & (1 << 1)) { __HAL_RCC_TIM2_CLK_DISABLE(); } #endif #ifdef TIM3 if (mask & (1 << 2)) { __HAL_RCC_TIM3_CLK_DISABLE(); } #endif #ifdef TIM4 if (mask & (1 << 3)) { __HAL_RCC_TIM4_CLK_DISABLE(); } #endif #ifdef TIM5 if (mask & (1 << 4)) { __HAL_RCC_TIM5_CLK_DISABLE(); } #endif //6 and 7 are reserved ADC timers #ifdef TIM8 if (mask & (1 << 7)) { __HAL_RCC_TIM8_CLK_DISABLE(); } #endif #ifdef TIM9 if (mask & (1 << 8)) { __HAL_RCC_TIM9_CLK_DISABLE(); } #endif #ifdef TIM10 if (mask & (1 << 9)) { __HAL_RCC_TIM10_CLK_DISABLE(); } #endif #ifdef TIM11 if (mask & (1 << 10)) { __HAL_RCC_TIM11_CLK_DISABLE(); } #endif #ifdef TIM12 if (mask & (1 << 11)) { __HAL_RCC_TIM12_CLK_DISABLE(); } #endif #ifdef TIM13 if (mask & (1 << 12)) { __HAL_RCC_TIM13_CLK_DISABLE(); } #endif #ifdef TIM14 if (mask & (1 << 13)) { __HAL_RCC_TIM14_CLK_DISABLE(); } #endif }