/* * This file is part of the Micro Python project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2013, 2014, 2015 Damien P. George * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include #include "usbd_core.h" #include "usbd_desc.h" #include "usbd_cdc_msc_hid.h" #include "usbd_cdc_interface.h" #include "usbd_msc_storage.h" #include "usbd_hid_interface.h" #include "py/objstr.h" #include "py/runtime.h" #include "py/stream.h" #include "py/mperrno.h" #include "py/mphal.h" #include "bufhelper.h" #include "usb.h" #if defined(USE_USB_FS) #define USB_PHY_ID USB_PHY_FS_ID #elif defined(USE_USB_HS) && defined(USE_USB_HS_IN_FS) #define USB_PHY_ID USB_PHY_HS_ID #else #error Unable to determine proper USB_PHY_ID to use #endif // this will be persistent across a soft-reset mp_uint_t pyb_usb_flags = 0; #ifdef USE_DEVICE_MODE USBD_HandleTypeDef hUSBDDevice; pyb_usb_storage_medium_t pyb_usb_storage_medium = PYB_USB_STORAGE_MEDIUM_NONE; #endif // predefined hid mouse data STATIC const mp_obj_str_t pyb_usb_hid_mouse_desc_obj = { {&mp_type_bytes}, 0, // hash not valid USBD_HID_MOUSE_REPORT_DESC_SIZE, USBD_HID_MOUSE_ReportDesc, }; const mp_obj_tuple_t pyb_usb_hid_mouse_obj = { {&mp_type_tuple}, 5, { MP_OBJ_NEW_SMALL_INT(1), // subclass: boot MP_OBJ_NEW_SMALL_INT(2), // protocol: mouse MP_OBJ_NEW_SMALL_INT(USBD_HID_MOUSE_MAX_PACKET), MP_OBJ_NEW_SMALL_INT(8), // polling interval: 8ms (mp_obj_t)&pyb_usb_hid_mouse_desc_obj, }, }; // predefined hid keyboard data STATIC const mp_obj_str_t pyb_usb_hid_keyboard_desc_obj = { {&mp_type_bytes}, 0, // hash not valid USBD_HID_KEYBOARD_REPORT_DESC_SIZE, USBD_HID_KEYBOARD_ReportDesc, }; const mp_obj_tuple_t pyb_usb_hid_keyboard_obj = { {&mp_type_tuple}, 5, { MP_OBJ_NEW_SMALL_INT(1), // subclass: boot MP_OBJ_NEW_SMALL_INT(1), // protocol: keyboard MP_OBJ_NEW_SMALL_INT(USBD_HID_KEYBOARD_MAX_PACKET), MP_OBJ_NEW_SMALL_INT(8), // polling interval: 8ms (mp_obj_t)&pyb_usb_hid_keyboard_desc_obj, }, }; void pyb_usb_init0(void) { mp_hal_set_interrupt_char(-1); MP_STATE_PORT(pyb_hid_report_desc) = MP_OBJ_NULL; } bool pyb_usb_dev_init(uint16_t vid, uint16_t pid, usb_device_mode_t mode, USBD_HID_ModeInfoTypeDef *hid_info) { #ifdef USE_DEVICE_MODE if (!(pyb_usb_flags & PYB_USB_FLAG_DEV_ENABLED)) { // only init USB once in the device's power-lifetime USBD_SetVIDPIDRelease(vid, pid, 0x0200, mode == USBD_MODE_CDC); if (USBD_SelectMode(mode, hid_info) != 0) { return false; } USBD_Init(&hUSBDDevice, (USBD_DescriptorsTypeDef*)&USBD_Descriptors, USB_PHY_ID); USBD_RegisterClass(&hUSBDDevice, &USBD_CDC_MSC_HID); USBD_CDC_RegisterInterface(&hUSBDDevice, (USBD_CDC_ItfTypeDef*)&USBD_CDC_fops); switch (pyb_usb_storage_medium) { #if MICROPY_HW_HAS_SDCARD case PYB_USB_STORAGE_MEDIUM_SDCARD: USBD_MSC_RegisterStorage(&hUSBDDevice, (USBD_StorageTypeDef*)&USBD_SDCARD_STORAGE_fops); break; #endif default: USBD_MSC_RegisterStorage(&hUSBDDevice, (USBD_StorageTypeDef*)&USBD_FLASH_STORAGE_fops); break; } USBD_HID_RegisterInterface(&hUSBDDevice, (USBD_HID_ItfTypeDef*)&USBD_HID_fops); USBD_Start(&hUSBDDevice); } pyb_usb_flags |= PYB_USB_FLAG_DEV_ENABLED; #endif return true; } void pyb_usb_dev_deinit(void) { if (pyb_usb_flags & PYB_USB_FLAG_DEV_ENABLED) { USBD_Stop(&hUSBDDevice); pyb_usb_flags &= ~PYB_USB_FLAG_DEV_ENABLED; } } bool usb_vcp_is_enabled(void) { return (pyb_usb_flags & PYB_USB_FLAG_DEV_ENABLED) != 0; } int usb_vcp_recv_byte(uint8_t *c) { return USBD_CDC_Rx(c, 1, 0); } void usb_vcp_send_strn(const char *str, int len) { #ifdef USE_DEVICE_MODE if (pyb_usb_flags & PYB_USB_FLAG_DEV_ENABLED) { USBD_CDC_TxAlways((const uint8_t*)str, len); } #endif } void usb_vcp_send_strn_cooked(const char *str, int len) { #ifdef USE_DEVICE_MODE if (pyb_usb_flags & PYB_USB_FLAG_DEV_ENABLED) { for (const char *top = str + len; str < top; str++) { if (*str == '\n') { USBD_CDC_TxAlways((const uint8_t*)"\r\n", 2); } else { USBD_CDC_TxAlways((const uint8_t*)str, 1); } } } #endif } /******************************************************************************/ // Micro Python bindings for USB /* Philosophy of USB driver and Python API: pyb.usb_mode(...) configures the USB on the board. The USB itself is not an entity, rather the interfaces are, and can be accessed by creating objects, such as pyb.USB_VCP() and pyb.USB_HID(). We have: pyb.usb_mode() # return the current usb mode pyb.usb_mode(None) # disable USB pyb.usb_mode('VCP') # enable with VCP interface pyb.usb_mode('VCP+MSC') # enable with VCP and MSC interfaces pyb.usb_mode('VCP+HID') # enable with VCP and HID, defaulting to mouse protocol pyb.usb_mode('VCP+HID', vid=0xf055, pid=0x9800) # specify VID and PID pyb.usb_mode('VCP+HID', hid=pyb.hid_mouse) pyb.usb_mode('VCP+HID', hid=pyb.hid_keyboard) pyb.usb_mode('VCP+HID', pid=0x1234, hid=(subclass, protocol, max_packet_len, polling_interval, report_desc)) vcp = pyb.USB_VCP() # get the VCP device for read/write hid = pyb.USB_HID() # get the HID device for write/poll Possible extensions: pyb.usb_mode('host', ...) pyb.usb_mode('OTG', ...) pyb.usb_mode(..., port=2) # for second USB port */ STATIC mp_obj_t pyb_usb_mode(mp_uint_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { static const mp_arg_t allowed_args[] = { { MP_QSTR_mode, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = mp_const_none} }, { MP_QSTR_vid, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = USBD_VID} }, { MP_QSTR_pid, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} }, { MP_QSTR_hid, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = (mp_obj_t)&pyb_usb_hid_mouse_obj} }, }; // fetch the current usb mode -> pyb.usb_mode() if (n_args == 0) { #if defined(USE_HOST_MODE) return MP_OBJ_NEW_QSTR(MP_QSTR_host); #elif defined(USE_DEVICE_MODE) uint8_t mode = USBD_GetMode(); switch (mode) { case USBD_MODE_CDC: return MP_OBJ_NEW_QSTR(MP_QSTR_VCP); case USBD_MODE_MSC: return MP_OBJ_NEW_QSTR(MP_QSTR_MSC); case USBD_MODE_HID: return MP_OBJ_NEW_QSTR(MP_QSTR_HID); case USBD_MODE_CDC_MSC: return MP_OBJ_NEW_QSTR(MP_QSTR_VCP_plus_MSC); case USBD_MODE_CDC_HID: return MP_OBJ_NEW_QSTR(MP_QSTR_VCP_plus_HID); case USBD_MODE_MSC_HID: return MP_OBJ_NEW_QSTR(MP_QSTR_MSC_plus_HID); default: return mp_const_none; } #endif } // parse args mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); // record the fact that the usb has been explicitly configured pyb_usb_flags |= PYB_USB_FLAG_USB_MODE_CALLED; // check if user wants to disable the USB if (args[0].u_obj == mp_const_none) { // disable usb #if defined(USE_DEVICE_MODE) pyb_usb_dev_deinit(); #endif return mp_const_none; } // get mode string const char *mode_str = mp_obj_str_get_str(args[0].u_obj); #if defined(USE_HOST_MODE) // hardware configured for USB host mode if (strcmp(mode_str, "host") == 0) { pyb_usb_host_init(); } else { goto bad_mode; } #elif defined(USE_DEVICE_MODE) // hardware configured for USB device mode // get the VID, PID and USB mode // note: PID=-1 means select PID based on mode // note: we support CDC as a synonym for VCP for backward compatibility uint16_t vid = args[1].u_int; uint16_t pid = args[2].u_int; usb_device_mode_t mode; if (strcmp(mode_str, "CDC+MSC") == 0 || strcmp(mode_str, "VCP+MSC") == 0) { if (args[2].u_int == -1) { pid = USBD_PID_CDC_MSC; } mode = USBD_MODE_CDC_MSC; } else if (strcmp(mode_str, "CDC+HID") == 0 || strcmp(mode_str, "VCP+HID") == 0) { if (args[2].u_int == -1) { pid = USBD_PID_CDC_HID; } mode = USBD_MODE_CDC_HID; } else if (strcmp(mode_str, "CDC") == 0 || strcmp(mode_str, "VCP") == 0) { if (args[2].u_int == -1) { pid = USBD_PID_CDC; } mode = USBD_MODE_CDC; } else { goto bad_mode; } // get hid info if user selected such a mode USBD_HID_ModeInfoTypeDef hid_info; if (mode & USBD_MODE_HID) { mp_obj_t *items; mp_obj_get_array_fixed_n(args[3].u_obj, 5, &items); hid_info.subclass = mp_obj_get_int(items[0]); hid_info.protocol = mp_obj_get_int(items[1]); hid_info.max_packet_len = mp_obj_get_int(items[2]); hid_info.polling_interval = mp_obj_get_int(items[3]); mp_buffer_info_t bufinfo; mp_get_buffer_raise(items[4], &bufinfo, MP_BUFFER_READ); hid_info.report_desc = bufinfo.buf; hid_info.report_desc_len = bufinfo.len; // need to keep a copy of this so report_desc does not get GC'd MP_STATE_PORT(pyb_hid_report_desc) = items[4]; } // init the USB device if (!pyb_usb_dev_init(vid, pid, mode, &hid_info)) { goto bad_mode; } #else // hardware not configured for USB goto bad_mode; #endif return mp_const_none; bad_mode: nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, "bad USB mode")); } MP_DEFINE_CONST_FUN_OBJ_KW(pyb_usb_mode_obj, 0, pyb_usb_mode); /******************************************************************************/ // Micro Python bindings for USB VCP /// \moduleref pyb /// \class USB_VCP - USB virtual comm port /// /// The USB_VCP class allows creation of an object representing the USB /// virtual comm port. It can be used to read and write data over USB to /// the connected host. typedef struct _pyb_usb_vcp_obj_t { mp_obj_base_t base; } pyb_usb_vcp_obj_t; STATIC const pyb_usb_vcp_obj_t pyb_usb_vcp_obj = {{&pyb_usb_vcp_type}}; STATIC void pyb_usb_vcp_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) { mp_print_str(print, "USB_VCP()"); } /// \classmethod \constructor() /// Create a new USB_VCP object. STATIC mp_obj_t pyb_usb_vcp_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) { // check arguments mp_arg_check_num(n_args, n_kw, 0, 0, false); // TODO raise exception if USB is not configured for VCP // return the USB VCP object return (mp_obj_t)&pyb_usb_vcp_obj; } STATIC mp_obj_t pyb_usb_vcp_setinterrupt(mp_obj_t self_in, mp_obj_t int_chr_in) { mp_hal_set_interrupt_char(mp_obj_get_int(int_chr_in)); return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_2(pyb_usb_vcp_setinterrupt_obj, pyb_usb_vcp_setinterrupt); STATIC mp_obj_t pyb_usb_vcp_isconnected(mp_obj_t self_in) { return mp_obj_new_bool(USBD_CDC_IsConnected()); } STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_usb_vcp_isconnected_obj, pyb_usb_vcp_isconnected); // deprecated in favour of USB_VCP.isconnected STATIC mp_obj_t pyb_have_cdc(void) { return pyb_usb_vcp_isconnected(MP_OBJ_NULL); } MP_DEFINE_CONST_FUN_OBJ_0(pyb_have_cdc_obj, pyb_have_cdc); /// \method any() /// Return `True` if any characters waiting, else `False`. STATIC mp_obj_t pyb_usb_vcp_any(mp_obj_t self_in) { if (USBD_CDC_RxNum() > 0) { return mp_const_true; } else { return mp_const_false; } } STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_usb_vcp_any_obj, pyb_usb_vcp_any); /// \method send(data, *, timeout=5000) /// Send data over the USB VCP: /// /// - `data` is the data to send (an integer to send, or a buffer object). /// - `timeout` is the timeout in milliseconds to wait for the send. /// /// Return value: number of bytes sent. STATIC const mp_arg_t pyb_usb_vcp_send_args[] = { { MP_QSTR_data, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} }, { MP_QSTR_timeout, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 5000} }, }; #define PYB_USB_VCP_SEND_NUM_ARGS MP_ARRAY_SIZE(pyb_usb_vcp_send_args) STATIC mp_obj_t pyb_usb_vcp_send(mp_uint_t n_args, const mp_obj_t *args, mp_map_t *kw_args) { // parse args mp_arg_val_t vals[PYB_USB_VCP_SEND_NUM_ARGS]; mp_arg_parse_all(n_args - 1, args + 1, kw_args, PYB_USB_VCP_SEND_NUM_ARGS, pyb_usb_vcp_send_args, vals); // get the buffer to send from mp_buffer_info_t bufinfo; uint8_t data[1]; pyb_buf_get_for_send(vals[0].u_obj, &bufinfo, data); // send the data int ret = USBD_CDC_Tx(bufinfo.buf, bufinfo.len, vals[1].u_int); return mp_obj_new_int(ret); } STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_usb_vcp_send_obj, 1, pyb_usb_vcp_send); /// \method recv(data, *, timeout=5000) /// /// Receive data on the bus: /// /// - `data` can be an integer, which is the number of bytes to receive, /// or a mutable buffer, which will be filled with received bytes. /// - `timeout` is the timeout in milliseconds to wait for the receive. /// /// Return value: if `data` is an integer then a new buffer of the bytes received, /// otherwise the number of bytes read into `data` is returned. STATIC mp_obj_t pyb_usb_vcp_recv(mp_uint_t n_args, const mp_obj_t *args, mp_map_t *kw_args) { // parse args mp_arg_val_t vals[PYB_USB_VCP_SEND_NUM_ARGS]; mp_arg_parse_all(n_args - 1, args + 1, kw_args, PYB_USB_VCP_SEND_NUM_ARGS, pyb_usb_vcp_send_args, vals); // get the buffer to receive into vstr_t vstr; mp_obj_t o_ret = pyb_buf_get_for_recv(vals[0].u_obj, &vstr); // receive the data int ret = USBD_CDC_Rx((uint8_t*)vstr.buf, vstr.len, vals[1].u_int); // return the received data if (o_ret != MP_OBJ_NULL) { return mp_obj_new_int(ret); // number of bytes read into given buffer } else { vstr.len = ret; // set actual number of bytes read return mp_obj_new_str_from_vstr(&mp_type_bytes, &vstr); // create a new buffer } } STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_usb_vcp_recv_obj, 1, pyb_usb_vcp_recv); mp_obj_t pyb_usb_vcp___exit__(mp_uint_t n_args, const mp_obj_t *args) { return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_usb_vcp___exit___obj, 4, 4, pyb_usb_vcp___exit__); STATIC const mp_map_elem_t pyb_usb_vcp_locals_dict_table[] = { { MP_OBJ_NEW_QSTR(MP_QSTR_setinterrupt), (mp_obj_t)&pyb_usb_vcp_setinterrupt_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_isconnected), (mp_obj_t)&pyb_usb_vcp_isconnected_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_any), (mp_obj_t)&pyb_usb_vcp_any_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_send), (mp_obj_t)&pyb_usb_vcp_send_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_recv), (mp_obj_t)&pyb_usb_vcp_recv_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_read), (mp_obj_t)&mp_stream_read_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_readinto), (mp_obj_t)&mp_stream_readinto_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_readline), (mp_obj_t)&mp_stream_unbuffered_readline_obj}, { MP_OBJ_NEW_QSTR(MP_QSTR_readlines), (mp_obj_t)&mp_stream_unbuffered_readlines_obj}, { MP_OBJ_NEW_QSTR(MP_QSTR_write), (mp_obj_t)&mp_stream_write_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_close), (mp_obj_t)&mp_identity_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR___del__), (mp_obj_t)&mp_identity_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR___enter__), (mp_obj_t)&mp_identity_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR___exit__), (mp_obj_t)&pyb_usb_vcp___exit___obj }, }; STATIC MP_DEFINE_CONST_DICT(pyb_usb_vcp_locals_dict, pyb_usb_vcp_locals_dict_table); STATIC mp_uint_t pyb_usb_vcp_read(mp_obj_t self_in, void *buf, mp_uint_t size, int *errcode) { int ret = USBD_CDC_Rx((byte*)buf, size, 0); if (ret == 0) { // return EAGAIN error to indicate non-blocking *errcode = MP_EAGAIN; return MP_STREAM_ERROR; } return ret; } STATIC mp_uint_t pyb_usb_vcp_write(mp_obj_t self_in, const void *buf, mp_uint_t size, int *errcode) { int ret = USBD_CDC_Tx((const byte*)buf, size, 0); if (ret == 0) { // return EAGAIN error to indicate non-blocking *errcode = MP_EAGAIN; return MP_STREAM_ERROR; } return ret; } STATIC mp_uint_t pyb_usb_vcp_ioctl(mp_obj_t self_in, mp_uint_t request, mp_uint_t arg, int *errcode) { mp_uint_t ret; if (request == MP_STREAM_POLL) { mp_uint_t flags = arg; ret = 0; if ((flags & MP_STREAM_POLL_RD) && USBD_CDC_RxNum() > 0) { ret |= MP_STREAM_POLL_RD; } if ((flags & MP_STREAM_POLL_WR) && USBD_CDC_TxHalfEmpty()) { ret |= MP_STREAM_POLL_WR; } } else { *errcode = MP_EINVAL; ret = MP_STREAM_ERROR; } return ret; } STATIC const mp_stream_p_t pyb_usb_vcp_stream_p = { .read = pyb_usb_vcp_read, .write = pyb_usb_vcp_write, .ioctl = pyb_usb_vcp_ioctl, }; const mp_obj_type_t pyb_usb_vcp_type = { { &mp_type_type }, .name = MP_QSTR_USB_VCP, .print = pyb_usb_vcp_print, .make_new = pyb_usb_vcp_make_new, .getiter = mp_identity, .iternext = mp_stream_unbuffered_iter, .protocol = &pyb_usb_vcp_stream_p, .locals_dict = (mp_obj_t)&pyb_usb_vcp_locals_dict, }; /******************************************************************************/ // Micro Python bindings for USB HID typedef struct _pyb_usb_hid_obj_t { mp_obj_base_t base; } pyb_usb_hid_obj_t; STATIC const pyb_usb_hid_obj_t pyb_usb_hid_obj = {{&pyb_usb_hid_type}}; STATIC mp_obj_t pyb_usb_hid_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) { // check arguments mp_arg_check_num(n_args, n_kw, 0, 0, false); // TODO raise exception if USB is not configured for HID // return the USB HID object return (mp_obj_t)&pyb_usb_hid_obj; } /// \method recv(data, *, timeout=5000) /// /// Receive data on the bus: /// /// - `data` can be an integer, which is the number of bytes to receive, /// or a mutable buffer, which will be filled with received bytes. /// - `timeout` is the timeout in milliseconds to wait for the receive. /// /// Return value: if `data` is an integer then a new buffer of the bytes received, /// otherwise the number of bytes read into `data` is returned. STATIC mp_obj_t pyb_usb_hid_recv(mp_uint_t n_args, const mp_obj_t *args, mp_map_t *kw_args) { static const mp_arg_t allowed_args[] = { { MP_QSTR_data, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} }, { MP_QSTR_timeout, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 5000} }, }; // parse args mp_arg_val_t vals[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all(n_args - 1, args + 1, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, vals); // get the buffer to receive into vstr_t vstr; mp_obj_t o_ret = pyb_buf_get_for_recv(vals[0].u_obj, &vstr); // receive the data int ret = USBD_HID_Rx((uint8_t*)vstr.buf, vstr.len, vals[1].u_int); // return the received data if (o_ret != MP_OBJ_NULL) { return mp_obj_new_int(ret); // number of bytes read into given buffer } else { vstr.len = ret; // set actual number of bytes read return mp_obj_new_str_from_vstr(&mp_type_bytes, &vstr); // create a new buffer } } STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_usb_hid_recv_obj, 1, pyb_usb_hid_recv); STATIC mp_obj_t pyb_usb_hid_send(mp_obj_t self_in, mp_obj_t report_in) { #ifdef USE_DEVICE_MODE mp_buffer_info_t bufinfo; byte temp_buf[8]; // get the buffer to send from // we accept either a byte array, or a tuple/list of integers if (!mp_get_buffer(report_in, &bufinfo, MP_BUFFER_READ)) { mp_obj_t *items; mp_obj_get_array(report_in, &bufinfo.len, &items); if (bufinfo.len > sizeof(temp_buf)) { nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, "tuple/list too large for HID report; use bytearray instead")); } for (int i = 0; i < bufinfo.len; i++) { temp_buf[i] = mp_obj_get_int(items[i]); } bufinfo.buf = temp_buf; } // send the data if (USBD_OK == USBD_HID_SendReport(&hUSBDDevice, bufinfo.buf, bufinfo.len)) { return mp_obj_new_int(bufinfo.len); } else { return mp_obj_new_int(0); } #endif return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_2(pyb_usb_hid_send_obj, pyb_usb_hid_send); // deprecated in favour of USB_HID.send STATIC mp_obj_t pyb_hid_send_report(mp_obj_t arg) { return pyb_usb_hid_send(MP_OBJ_NULL, arg); } MP_DEFINE_CONST_FUN_OBJ_1(pyb_hid_send_report_obj, pyb_hid_send_report); STATIC const mp_map_elem_t pyb_usb_hid_locals_dict_table[] = { { MP_OBJ_NEW_QSTR(MP_QSTR_send), (mp_obj_t)&pyb_usb_hid_send_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_recv), (mp_obj_t)&pyb_usb_hid_recv_obj }, }; STATIC MP_DEFINE_CONST_DICT(pyb_usb_hid_locals_dict, pyb_usb_hid_locals_dict_table); STATIC mp_uint_t pyb_usb_hid_ioctl(mp_obj_t self_in, mp_uint_t request, mp_uint_t arg, int *errcode) { mp_uint_t ret; if (request == MP_STREAM_POLL) { mp_uint_t flags = arg; ret = 0; if ((flags & MP_STREAM_POLL_RD) && USBD_HID_RxNum() > 0) { ret |= MP_STREAM_POLL_RD; } if ((flags & MP_STREAM_POLL_WR) && USBD_HID_CanSendReport(&hUSBDDevice)) { ret |= MP_STREAM_POLL_WR; } } else { *errcode = MP_EINVAL; ret = MP_STREAM_ERROR; } return ret; } STATIC const mp_stream_p_t pyb_usb_hid_stream_p = { .ioctl = pyb_usb_hid_ioctl, }; const mp_obj_type_t pyb_usb_hid_type = { { &mp_type_type }, .name = MP_QSTR_USB_HID, .make_new = pyb_usb_hid_make_new, .protocol = &pyb_usb_hid_stream_p, .locals_dict = (mp_obj_t)&pyb_usb_hid_locals_dict, }; /******************************************************************************/ // code for experimental USB OTG support #ifdef USE_HOST_MODE #include "led.h" #include "usbh_core.h" #include "usbh_usr.h" #include "usbh_hid_core.h" #include "usbh_hid_keybd.h" #include "usbh_hid_mouse.h" __ALIGN_BEGIN USBH_HOST USB_Host __ALIGN_END ; static int host_is_enabled = 0; void pyb_usb_host_init(void) { if (!host_is_enabled) { // only init USBH once in the device's power-lifetime /* Init Host Library */ USBH_Init(&USB_OTG_Core, USB_OTG_FS_CORE_ID, &USB_Host, &HID_cb, &USR_Callbacks); } host_is_enabled = 1; } void pyb_usb_host_process(void) { USBH_Process(&USB_OTG_Core, &USB_Host); } uint8_t usb_keyboard_key = 0; // TODO this is an ugly hack to get key presses uint pyb_usb_host_get_keyboard(void) { uint key = usb_keyboard_key; usb_keyboard_key = 0; return key; } void USR_MOUSE_Init(void) { led_state(4, 1); USB_OTG_BSP_mDelay(100); led_state(4, 0); } void USR_MOUSE_ProcessData(HID_MOUSE_Data_TypeDef *data) { led_state(4, 1); USB_OTG_BSP_mDelay(50); led_state(4, 0); } void USR_KEYBRD_Init(void) { led_state(4, 1); USB_OTG_BSP_mDelay(100); led_state(4, 0); } void USR_KEYBRD_ProcessData(uint8_t pbuf) { led_state(4, 1); USB_OTG_BSP_mDelay(50); led_state(4, 0); usb_keyboard_key = pbuf; } #endif // USE_HOST_MODE