/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2017 Scott Shawcroft for Adafruit Industries * Copyright (c) 2016 Damien P. George * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include "nrf.h" #include "py/runtime.h" #include "common-hal/pulseio/PWMOut.h" #include "nrf_gpio.h" #include "shared-bindings/pulseio/PWMOut.h" #include "supervisor/shared/translate.h" #define PWM_MAX_MODULE 3 #define PWM_MAX_CHANNEL 4 #define PWM_MAX_FREQ (16000000) NRF_PWM_Type* const pwm_arr[PWM_MAX_MODULE] = { NRF_PWM0, NRF_PWM1, NRF_PWM2 }; uint16_t _seq0[PWM_MAX_MODULE][PWM_MAX_CHANNEL]; static int pin2channel(NRF_PWM_Type* pwm, uint8_t pin) { for(int i=0; i < PWM_MAX_CHANNEL; i++) { if ( pwm->PSEL.OUT[i] == ((uint32_t)pin) ) return i; } return -1; } static int find_free_channel(NRF_PWM_Type* pwm) { for(int i=0; i < PWM_MAX_CHANNEL; i++) { if (pwm->PSEL.OUT[i] == 0xFFFFFFFFUL) { return i; } } return -1; } static bool pwm_is_unused(NRF_PWM_Type* pwm) { for(int i=0; i < PWM_MAX_CHANNEL; i++) { if (pwm->PSEL.OUT[i] != 0xFFFFFFFFUL) { return false; } } return true; } static void find_new_pwm(pulseio_pwmout_obj_t* self) { // First find unused PWM module for(int i=0; ipwm = pwm_arr[i]; self->channel = 0; return; } } // Find available channel in a using PWM for(int i=0; i= 0 ) { self->pwm = pwm_arr[i]; self->channel = (uint8_t) ch; return; } } } void pwmout_reset(void) { for(int i=0; iMODE = PWM_MODE_UPDOWN_Up; pwm->DECODER = PWM_DECODER_LOAD_Individual; pwm->LOOP = 0; pwm->PRESCALER = PWM_PRESCALER_PRESCALER_DIV_1; // default is 500 hz pwm->COUNTERTOP = (PWM_MAX_FREQ/500); // default is 500 hz pwm->SEQ[0].PTR = (uint32_t) _seq0[i]; pwm->SEQ[0].CNT = PWM_MAX_CHANNEL; // default mode is Individual --> count must be 4 pwm->SEQ[0].REFRESH = 0; pwm->SEQ[0].ENDDELAY = 0; pwm->SEQ[1].PTR = 0; pwm->SEQ[1].CNT = 0; pwm->SEQ[1].REFRESH = 0; pwm->SEQ[1].ENDDELAY = 0; for(int ch =0; ch < PWM_MAX_CHANNEL; ch++) { _seq0[i][ch] = (1UL << 15); // polarity = 0 } } } void common_hal_pulseio_pwmout_construct(pulseio_pwmout_obj_t* self, const mcu_pin_obj_t* pin, uint16_t duty, uint32_t frequency, bool variable_frequency) { self->pwm = NULL; self->pin = pin; // check if mapped to PWM channel already for(int i=0; iport, pin->pin)); if ( ch >= 0 ) { self->pwm = pwm_arr[i]; self->channel = (uint8_t) ch; break; } } // Haven't mapped before if ( !self->pwm ) { find_new_pwm(self); } if (self->pwm) { nrf_gpio_cfg_output(NRF_GPIO_PIN_MAP(pin->port, pin->pin)); // disable before mapping pin channel self->pwm->ENABLE = 0; self->pwm->PSEL.OUT[self->channel] = NRF_GPIO_PIN_MAP(pin->port, pin->pin); self->pwm->COUNTERTOP = (PWM_MAX_FREQ/frequency); self->freq = frequency; self->variable_freq = variable_frequency; self->pwm->ENABLE = 1; common_hal_pulseio_pwmout_set_duty_cycle(self, duty); } } bool common_hal_pulseio_pwmout_deinited(pulseio_pwmout_obj_t* self) { return self->pwm == NULL; } void common_hal_pulseio_pwmout_deinit(pulseio_pwmout_obj_t* self) { if (common_hal_pulseio_pwmout_deinited(self)) { return; } self->pwm->ENABLE = 0; self->pwm->PSEL.OUT[self->channel] = 0xFFFFFFFFUL; // re-enable PWM module if there is other active channel for(int i=0; i < PWM_MAX_CHANNEL; i++) { if (self->pwm->PSEL.OUT[i] != 0xFFFFFFFFUL) { self->pwm->ENABLE = 1; break; } } nrf_gpio_cfg_default(NRF_GPIO_PIN_MAP(self->pin->port, self->pin->pin)); self->pwm = NULL; self->pin = mp_const_none; } void common_hal_pulseio_pwmout_set_duty_cycle(pulseio_pwmout_obj_t* self, uint16_t duty) { self->duty = duty; uint16_t* p_value = ((uint16_t*)self->pwm->SEQ[0].PTR) + self->channel; *p_value = ((duty * self->pwm->COUNTERTOP) / 0xFFFF) | (1 << 15); self->pwm->TASKS_SEQSTART[0] = 1; } uint16_t common_hal_pulseio_pwmout_get_duty_cycle(pulseio_pwmout_obj_t* self) { return self->duty; } void common_hal_pulseio_pwmout_set_frequency(pulseio_pwmout_obj_t* self, uint32_t frequency) { if (frequency == 0 || frequency > 16000000) { mp_raise_ValueError(translate("Invalid PWM frequency")); } self->freq = frequency; self->pwm->COUNTERTOP = (PWM_MAX_FREQ/frequency); self->pwm->TASKS_SEQSTART[0] = 1; } uint32_t common_hal_pulseio_pwmout_get_frequency(pulseio_pwmout_obj_t* self) { return self->freq; } bool common_hal_pulseio_pwmout_get_variable_frequency(pulseio_pwmout_obj_t* self) { return self->variable_freq; }