#include #include #include "py/nlr.h" #include "py/compile.h" #include "py/mphal.h" #include "py/runtime.h" #include "py/repl.h" #include "py/gc.h" #include "lib/fatfs/ff.h" #include "lib/fatfs/diskio.h" #include "lib/mp-readline/readline.h" #include "lib/utils/pyexec.h" #include "extmod/fsusermount.h" #include "asf/common/services/sleepmgr/sleepmgr.h" #include "asf/common/services/usb/udc/udc.h" #include "asf/common2/services/delay/delay.h" #include "asf/sam0/drivers/port/port.h" #include "asf/sam0/drivers/sercom/usart/usart.h" #include "asf/sam0/drivers/system/system.h" #include #ifdef EXPRESS_BOARD #include "common-hal/nativeio/types.h" #include "QTouch/touch_api_ptc.h" #endif #include "autoreset.h" #include "mpconfigboard.h" #include "rgb_led_status.h" #include "tick.h" fs_user_mount_t fs_user_mount_flash; void do_str(const char *src, mp_parse_input_kind_t input_kind) { mp_lexer_t *lex = mp_lexer_new_from_str_len(MP_QSTR__lt_stdin_gt_, src, strlen(src), 0); if (lex == NULL) { printf("MemoryError: lexer could not allocate memory\n"); return; } nlr_buf_t nlr; if (nlr_push(&nlr) == 0) { qstr source_name = lex->source_name; mp_parse_tree_t parse_tree = mp_parse(lex, input_kind); mp_obj_t module_fun = mp_compile(&parse_tree, source_name, MP_EMIT_OPT_NONE, true); mp_call_function_0(module_fun); nlr_pop(); } else { // uncaught exception mp_obj_print_exception(&mp_plat_print, (mp_obj_t)nlr.ret_val); } } extern void flash_init_vfs(fs_user_mount_t *vfs); // we don't make this function static because it needs a lot of stack and we // want it to be executed without using stack within main() function void init_flash_fs(void) { // init the vfs object fs_user_mount_t *vfs = &fs_user_mount_flash; vfs->str = "/flash"; vfs->len = 6; vfs->flags = 0; flash_init_vfs(vfs); // put the flash device in slot 0 (it will be unused at this point) MP_STATE_PORT(fs_user_mount)[0] = vfs; // try to mount the flash FRESULT res = f_mount(&vfs->fatfs, vfs->str, 1); if (res == FR_NO_FILESYSTEM) { // no filesystem, or asked to reset it, so create a fresh one // We are before USB initializes so temporarily undo the USB_WRITEABLE // requirement. bool usb_writeable = (vfs->flags & FSUSER_USB_WRITEABLE) > 0; vfs->flags &= ~FSUSER_USB_WRITEABLE; res = f_mkfs("/flash", 0, 0); if (res != FR_OK) { MP_STATE_PORT(fs_user_mount)[0] = NULL; return; } // set label f_setlabel("MICROPYTHON"); if (usb_writeable) { vfs->flags |= FSUSER_USB_WRITEABLE; } } else if (res != FR_OK) { MP_STATE_PORT(fs_user_mount)[0] = NULL; return; } // The current directory is used as the boot up directory. // It is set to the internal flash filesystem by default. f_chdrive("/flash"); } static char *stack_top; static char heap[16384]; void reset_mp(void) { new_status_color(0x8f008f); autoreset_stop(); autoreset_enable(); // Sync the file systems in case any used RAM from the GC to cache. As soon // as we re-init the GC all bets are off on the cache. disk_ioctl(0, CTRL_SYNC, NULL); disk_ioctl(1, CTRL_SYNC, NULL); disk_ioctl(2, CTRL_SYNC, NULL); #if MICROPY_ENABLE_GC gc_init(heap, heap + sizeof(heap)); #endif mp_init(); mp_obj_list_init(mp_sys_path, 0); mp_obj_list_append(mp_sys_path, MP_OBJ_NEW_QSTR(MP_QSTR_)); // current dir (or base dir of the script) mp_obj_list_append(mp_sys_path, MP_OBJ_NEW_QSTR(MP_QSTR__slash_flash)); mp_obj_list_append(mp_sys_path, MP_OBJ_NEW_QSTR(MP_QSTR__slash_flash_slash_lib)); mp_obj_list_init(mp_sys_argv, 0); } #ifdef EXPRESS_BOARD extern nativeio_touchin_obj_t *active_touchin_obj[DEF_SELFCAP_NUM_CHANNELS]; extern touch_selfcap_config_t selfcap_config; #endif void reset_samd21(void) { // Reset all SERCOMs except the one being used by the SPI flash. Sercom *sercom_instances[SERCOM_INST_NUM] = SERCOM_INSTS; for (int i = 0; i < SERCOM_INST_NUM; i++) { #ifdef SPI_FLASH_SERCOM if (sercom_instances[i] == SPI_FLASH_SERCOM) { continue; } #endif #ifdef MICROPY_HW_APA102_SERCOM if (sercom_instances[i] == MICROPY_HW_APA102_SERCOM) { continue; } #endif sercom_instances[i]->SPI.CTRLA.bit.SWRST = 1; } #ifdef EXPRESS_BOARD touch_selfcap_sensors_deinit(); for (int i = 0; i < selfcap_config.num_channels; i++) { active_touchin_obj[i] = NULL; } selfcap_config.num_channels = 0; selfcap_config.num_sensors = 0; #endif struct system_pinmux_config config; system_pinmux_get_config_defaults(&config); config.powersave = true; uint32_t pin_mask[2] = PORT_OUT_IMPLEMENTED; system_pinmux_group_set_config(&(PORT->Group[0]), pin_mask[0] & ~MICROPY_PORT_A, &config); system_pinmux_group_set_config(&(PORT->Group[1]), pin_mask[1] & ~MICROPY_PORT_B, &config); } bool maybe_run(const char* filename, pyexec_result_t* exec_result) { FILINFO fno; #if _USE_LFN fno.lfname = NULL; fno.lfsize = 0; #endif FRESULT res = f_stat(filename, &fno); if (res != FR_OK || fno.fattrib & AM_DIR) { return false; } mp_hal_stdout_tx_str(filename); mp_hal_stdout_tx_str(" output:\r\n"); pyexec_file(filename, exec_result); return true; } bool start_mp(void) { bool cdc_enabled_at_start = mp_cdc_enabled; #ifdef AUTORESET_DELAY_MS if (cdc_enabled_at_start) { mp_hal_stdout_tx_str("\r\n"); mp_hal_stdout_tx_str("Auto-soft reset is on. Simply save files over USB to run them.\r\n"); } #endif new_status_color(BOOT_RUNNING); pyexec_result_t result; bool found_boot = maybe_run("settings.txt", &result) || maybe_run("settings.py", &result) || maybe_run("boot.py", &result) || maybe_run("boot.txt", &result); bool found_main = false; if (!found_boot || !(result.return_code & PYEXEC_FORCED_EXIT)) { new_status_color(MAIN_RUNNING); found_main = maybe_run("code.txt", &result) || maybe_run("code.py", &result) || maybe_run("main.py", &result) || maybe_run("main.txt", &result); } if (result.return_code & PYEXEC_FORCED_EXIT) { return reset_next_character; } // If not is USB mode then do not skip the repl. #ifndef USB_REPL return false; #endif // Wait for connection or character. bool cdc_enabled_before = false; #if defined(MICROPY_HW_NEOPIXEL) || (defined(MICROPY_HW_APA102_MOSI) && defined(MICROPY_HW_APA102_SCK)) new_status_color(ALL_DONE); uint32_t pattern_start = ticks_ms; uint32_t total_exception_cycle = 0; uint8_t ones = result.exception_line % 10; ones += ones > 0 ? 1 : 0; uint8_t tens = (result.exception_line / 10) % 10; tens += tens > 0 ? 1 : 0; uint8_t hundreds = (result.exception_line / 100) % 10; hundreds += hundreds > 0 ? 1 : 0; uint8_t thousands = (result.exception_line / 1000) % 10; thousands += thousands > 0 ? 1 : 0; uint8_t digit_sum = ones + tens + hundreds + thousands; uint8_t num_places = 0; uint16_t line = result.exception_line; for (int i = 0; i < 4; i++) { if ((line % 10) > 0) { num_places++; } line /= 10; } if (result.return_code == PYEXEC_EXCEPTION) { total_exception_cycle = EXCEPTION_TYPE_LENGTH_MS * 3 + LINE_NUMBER_TOGGLE_LENGTH * digit_sum + LINE_NUMBER_TOGGLE_LENGTH * num_places; } #endif while (true) { #ifdef MICROPY_VM_HOOK_LOOP MICROPY_VM_HOOK_LOOP #endif if (reset_next_character) { return true; } if (usb_rx_count > 0) { // Skip REPL if reset was requested. return receive_usb() == CHAR_CTRL_D; } if (!cdc_enabled_before && mp_cdc_enabled) { if (cdc_enabled_at_start) { mp_hal_stdout_tx_str("\r\n\r\n"); } else { mp_hal_stdout_tx_str("Auto-soft reset is on. Simply save files over USB to run them.\r\n"); } mp_hal_stdout_tx_str("Press any key to enter the REPL and disable auto-reset. Use CTRL-D to soft reset.\r\n"); } if (cdc_enabled_before && !mp_cdc_enabled) { cdc_enabled_at_start = false; } cdc_enabled_before = mp_cdc_enabled; #if defined(MICROPY_HW_NEOPIXEL) || (defined(MICROPY_HW_APA102_MOSI) && defined(MICROPY_HW_APA102_SCK)) uint32_t tick_diff = ticks_ms - pattern_start; if (result.return_code != PYEXEC_EXCEPTION) { // All is good. Ramp ALL_DONE up and down. if (tick_diff > ALL_GOOD_CYCLE_MS) { pattern_start = ticks_ms; tick_diff = 0; } uint16_t brightness = tick_diff * 255 / (ALL_GOOD_CYCLE_MS / 2); if (brightness > 255) { brightness = 511 - brightness; } new_status_color(color_brightness(ALL_DONE, brightness)); } else { if (tick_diff > total_exception_cycle) { pattern_start = ticks_ms; tick_diff = 0; } // First flash the file color. if (tick_diff < EXCEPTION_TYPE_LENGTH_MS) { if (found_main) { new_status_color(MAIN_RUNNING); } else { new_status_color(BOOT_RUNNING); } // Next flash the exception color. } else if (tick_diff < EXCEPTION_TYPE_LENGTH_MS * 2) { if (mp_obj_is_subclass_fast(result.exception_type, &mp_type_IndentationError)) { new_status_color(INDENTATION_ERROR); } else if (mp_obj_is_subclass_fast(result.exception_type, &mp_type_SyntaxError)) { new_status_color(SYNTAX_ERROR); } else if (mp_obj_is_subclass_fast(result.exception_type, &mp_type_NameError)) { new_status_color(NAME_ERROR); } else if (mp_obj_is_subclass_fast(result.exception_type, &mp_type_OSError)) { new_status_color(OS_ERROR); } else { new_status_color(OTHER_ERROR); } // Finally flash the line number digits from highest to lowest. // Zeroes will not produce a flash but can be read by the absence of // a color from the sequence. } else if (tick_diff < (EXCEPTION_TYPE_LENGTH_MS * 2 + LINE_NUMBER_TOGGLE_LENGTH * digit_sum)) { uint32_t digit_diff = tick_diff - EXCEPTION_TYPE_LENGTH_MS * 2; if ((digit_diff % LINE_NUMBER_TOGGLE_LENGTH) < (LINE_NUMBER_TOGGLE_LENGTH / 2)) { new_status_color(BLACK); } else if (digit_diff < LINE_NUMBER_TOGGLE_LENGTH * thousands) { if (digit_diff < LINE_NUMBER_TOGGLE_LENGTH) { new_status_color(BLACK); } else { new_status_color(THOUSANDS); } } else if (digit_diff < LINE_NUMBER_TOGGLE_LENGTH * (thousands + hundreds)) { if (digit_diff < LINE_NUMBER_TOGGLE_LENGTH * (thousands + 1)) { new_status_color(BLACK); } else { new_status_color(HUNDREDS); } } else if (digit_diff < LINE_NUMBER_TOGGLE_LENGTH * (thousands + hundreds + tens)) { if (digit_diff < LINE_NUMBER_TOGGLE_LENGTH * (thousands + hundreds + 1)) { new_status_color(BLACK); } else { new_status_color(TENS); } } else { if (digit_diff < LINE_NUMBER_TOGGLE_LENGTH * (thousands + hundreds + tens + 1)) { new_status_color(BLACK); } else { new_status_color(ONES); } } } else { new_status_color(BLACK); } } #else (void) found_main; // Pretend to use found_main so the compiler doesn't complain. #endif } } #ifdef UART_REPL struct usart_module usart_instance; #endif #ifdef ENABLE_MICRO_TRACE_BUFFER // Stores 2 ^ TRACE_BUFFER_MAGNITUDE_PACKETS packets. // 7 -> 128 packets #define TRACE_BUFFER_MAGNITUDE_PACKETS 7 // Size in uint32_t. Two per packet. #define TRACE_BUFFER_SIZE (1 << (TRACE_BUFFER_MAGNITUDE_PACKETS + 1)) // Size in bytes. 4 bytes per uint32_t. #define TRACE_BUFFER_SIZE_BYTES (TRACE_BUFFER_SIZE << 2) __attribute__((__aligned__(TRACE_BUFFER_SIZE_BYTES))) uint32_t mtb[TRACE_BUFFER_SIZE]; #endif // Serial number as hex characters. char serial_number[USB_DEVICE_GET_SERIAL_NAME_LENGTH]; void load_serial_number(void) { char nibble_to_hex[16] = {'0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'A', 'B', 'C', 'D', 'E', 'F'}; uint32_t* addresses[4] = {(uint32_t *) 0x0080A00C, (uint32_t *) 0x0080A040, (uint32_t *) 0x0080A044, (uint32_t *) 0x0080A048}; for (int i = 0; i < 4; i++) { for (int j = 0; j < 8; j++) { uint8_t nibble = (*(addresses[i]) >> j * 4) & 0xf; serial_number[i * 8 + j] = nibble_to_hex[nibble]; } } } void samd21_init(void) { #ifdef ENABLE_MICRO_TRACE_BUFFER REG_MTB_POSITION = ((uint32_t) (mtb - REG_MTB_BASE)) & 0xFFFFFFF8; REG_MTB_FLOW = (((uint32_t) mtb - REG_MTB_BASE) + TRACE_BUFFER_SIZE_BYTES) & 0xFFFFFFF8; REG_MTB_MASTER = 0x80000000 + (TRACE_BUFFER_MAGNITUDE_PACKETS - 1); #endif load_serial_number(); irq_initialize_vectors(); cpu_irq_enable(); // Initialize the sleep manager sleepmgr_init(); system_init(); delay_init(); board_init(); // Configure millisecond timer initialization. tick_init(); // Uncomment to init PIN_PA17 for debugging. // struct port_config pin_conf; // port_get_config_defaults(&pin_conf); // // pin_conf.direction = PORT_PIN_DIR_OUTPUT; // port_pin_set_config(MICROPY_HW_LED1, &pin_conf); // port_pin_set_output_level(MICROPY_HW_LED1, false); rgb_led_status_init(); } int main(int argc, char **argv) { // initialise the cpu and peripherals samd21_init(); int stack_dummy; // Store the location of stack_dummy as an approximation for the top of the // stack so the GC can account for objects that may be referenced by the // stack between here and where gc_collect is called. stack_top = (char*)&stack_dummy; reset_mp(); // Initialise the local flash filesystem after the gc in case we need to // grab memory from it. Create it if needed, mount in on /flash, and set it // as current dir. init_flash_fs(); // Start USB after getting everything going. #ifdef USB_REPL udc_start(); #endif // Main script is finished, so now go into REPL mode. // The REPL mode can change, or it can request a soft reset. int exit_code = PYEXEC_FORCED_EXIT; bool skip_repl = true; bool first_run = true; for (;;) { if (!skip_repl) { autoreset_disable(); new_status_color(REPL_RUNNING); if (pyexec_mode_kind == PYEXEC_MODE_RAW_REPL) { exit_code = pyexec_raw_repl(); } else { exit_code = pyexec_friendly_repl(); } } if (exit_code == PYEXEC_FORCED_EXIT) { if (!first_run) { mp_hal_stdout_tx_str("soft reboot\r\n"); reset_samd21(); reset_mp(); } first_run = false; skip_repl = start_mp(); } else if (exit_code != 0) { break; } } mp_deinit(); return 0; } void gc_collect(void) { // WARNING: This gc_collect implementation doesn't try to get root // pointers from CPU registers, and thus may function incorrectly. void *dummy; gc_collect_start(); // This naively collects all object references from an approximate stack // range. gc_collect_root(&dummy, ((mp_uint_t)stack_top - (mp_uint_t)&dummy) / sizeof(mp_uint_t)); gc_collect_end(); } mp_import_stat_t fat_vfs_import_stat(const char *path); mp_import_stat_t mp_import_stat(const char *path) { #if MICROPY_VFS_FAT return fat_vfs_import_stat(path); #else (void)path; return MP_IMPORT_STAT_NO_EXIST; #endif } void nlr_jump_fail(void *val) { } void NORETURN __fatal_error(const char *msg) { while (1); } #ifndef NDEBUG void MP_WEAK __assert_func(const char *file, int line, const char *func, const char *expr) { printf("Assertion '%s' failed, at file %s:%d\n", expr, file, line); __fatal_error("Assertion failed"); } #endif