/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2021 microDev * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "shared-bindings/busio/UART.h" #include "py/stream.h" #include "py/mperrno.h" #include "py/runtime.h" #include "supervisor/shared/tick.h" #include "shared/runtime/interrupt_char.h" #include "shared-bindings/microcontroller/Pin.h" #include "peripherals/broadcom/cpu.h" #include "peripherals/broadcom/defines.h" #include "peripherals/broadcom/gpio.h" #include "peripherals/broadcom/interrupts.h" #include "peripherals/broadcom/vcmailbox.h" #define NO_PIN 0xff #define UART_INST(uart) (((uart) ? uart1 : uart0)) typedef enum { STATUS_FREE = 0, STATUS_BUSY, STATUS_NEVER_RESET } uart_status_t; // The Broadcom chips have two different types of UARTs. UART1 is the "mini-UART" // that is most available so we've implemented it first. The ARM PL011 UART // support will be added later. We set NUM_UARTS to 2 here so that we can match // the indexing even though UART0 isn't supported yet. We currently use this // UART for debugging so we don't support user use of UART yet. #define NUM_UARTS 2 static uart_status_t uart_status[NUM_UARTS]; void reset_uart(void) { for (uint8_t num = 0; num < NUM_UARTS; num++) { if (uart_status[num] == STATUS_BUSY) { uart_status[num] = STATUS_FREE; } } } static busio_uart_obj_t *active_uarts[NUM_UARTS]; void UART1_IRQHandler(void) { while (UART1->STAT_b.DATA_READY && ringbuf_num_empty(&active_uarts[1]->ringbuf) > 0) { ringbuf_put(&active_uarts[1]->ringbuf, (uint8_t)UART1->IO_b.DATA); } // We couldn't read all pending data (overrun) so clear the FIFO so that the interrupt // can finish. if (UART1->STAT_b.DATA_READY) { UART1->IIR_b.DATA_READY = 1; } } void common_hal_busio_uart_never_reset(busio_uart_obj_t *self) { uart_status[self->uart_id] = STATUS_NEVER_RESET; } void common_hal_busio_uart_construct(busio_uart_obj_t *self, const mcu_pin_obj_t *tx, const mcu_pin_obj_t *rx, const mcu_pin_obj_t *rts, const mcu_pin_obj_t *cts, const mcu_pin_obj_t *rs485_dir, bool rs485_invert, uint32_t baudrate, uint8_t bits, busio_uart_parity_t parity, uint8_t stop, mp_float_t timeout, uint16_t receiver_buffer_size, byte *receiver_buffer, bool sigint_enabled) { if (bits > 8) { mp_raise_ValueError(translate("Invalid word/bit length")); } if (receiver_buffer_size == 0) { mp_raise_ValueError(translate("Invalid buffer size")); } if ((rs485_dir != NULL) || (rs485_invert)) { mp_raise_NotImplementedError(translate("RS485 Not yet supported on this device")); } if (tx == &pin_GPIO14) { if (rx == &pin_GPIO15) { self->uart_id = 1; } } self->rx_pin = rx; self->tx_pin = tx; if (rx != NULL) { if (receiver_buffer != NULL) { self->ringbuf = (ringbuf_t) { receiver_buffer, receiver_buffer_size }; } else { // Initially allocate the UART's buffer in the long-lived part of the // heap. UARTs are generally long-lived objects, but the "make long- // lived" machinery is incapable of moving internal pointers like // self->buffer, so do it manually. (However, as long as internal // pointers like this are NOT moved, allocating the buffer // in the long-lived pool is not strictly necessary) // (This is a macro.) if (!ringbuf_alloc(&self->ringbuf, receiver_buffer_size, true)) { mp_raise_msg(&mp_type_MemoryError, translate("Failed to allocate RX buffer")); } } } if (self->uart_id == 1) { active_uarts[1] = self; AUX->ENABLES_b.UART_1 = true; UART1->IER = 0; UART1->CNTL = 0; if (bits == 8) { UART1->LCR_b.DATA_SIZE = UART1_LCR_DATA_SIZE_MODE_8BIT; } else if (bits == 7) { UART1->LCR_b.DATA_SIZE = UART1_LCR_DATA_SIZE_MODE_7BIT; } UART1->MCR = 0; UART1->IER = 0; // Clear interrupts UART1->IIR = 0xff; uint32_t source_clock = vcmailbox_get_clock_rate_measured(VCMAILBOX_CLOCK_CORE); UART1->BAUD = ((source_clock / (baudrate * 8)) - 1); if (tx != NULL) { UART1->CNTL |= UART1_CNTL_TX_ENABLE_Msk; gpio_set_pull(14, BP_PULL_NONE); gpio_set_function(14, GPIO_GPFSEL1_FSEL14_TXD1); } if (rx != NULL) { UART1->CNTL |= UART1_CNTL_RX_ENABLE_Msk; gpio_set_pull(15, BP_PULL_NONE); gpio_set_function(15, GPIO_GPFSEL1_FSEL15_RXD1); } UART1->IER_b.DATA_READY = true; // Never disable this in case the SPIs are used. They can each be // disabled at the peripheral itself. BP_EnableIRQ(AUX_IRQn); } } bool common_hal_busio_uart_deinited(busio_uart_obj_t *self) { return self->tx_pin == NULL && self->rx_pin == NULL; } void common_hal_busio_uart_deinit(busio_uart_obj_t *self) { if (common_hal_busio_uart_deinited(self)) { return; } if (self->uart_id == 1) { UART1->IER_b.DATA_READY = false; UART1->CNTL = 0; AUX->ENABLES_b.UART_1 = false; active_uarts[1] = NULL; } ringbuf_free(&self->ringbuf); uart_status[self->uart_id] = STATUS_FREE; common_hal_reset_pin(self->tx_pin); common_hal_reset_pin(self->rx_pin); common_hal_reset_pin(self->cts_pin); common_hal_reset_pin(self->rts_pin); self->tx_pin = NULL; self->rx_pin = NULL; self->cts_pin = NULL; self->rts_pin = NULL; } // Write characters. size_t common_hal_busio_uart_write(busio_uart_obj_t *self, const uint8_t *data, size_t len, int *errcode) { if (self->tx_pin == NULL) { mp_raise_ValueError(translate("No TX pin")); } if (self->uart_id == 1) { COMPLETE_MEMORY_READS; for (size_t i = 0; i < len; i++) { // Wait for the FIFO to have space. while (!UART1->STAT_b.TX_READY) { RUN_BACKGROUND_TASKS; } UART1->IO = data[i]; } COMPLETE_MEMORY_READS; return len; } return 0; } // Read characters. size_t common_hal_busio_uart_read(busio_uart_obj_t *self, uint8_t *data, size_t len, int *errcode) { if (self->rx_pin == NULL) { mp_raise_ValueError(translate("No RX pin")); } if (len == 0) { // Nothing to read. return 0; } COMPLETE_MEMORY_READS; // Prevent conflict with uart irq. if (self->uart_id == 1) { UART1->IER_b.DATA_READY = false; } // Copy as much received data as available, up to len bytes. size_t total_read = ringbuf_get_n(&self->ringbuf, data, len); // Check if we still need to read more data. if (len > total_read) { len -= total_read; uint64_t start_ticks = supervisor_ticks_ms64(); // Busy-wait until timeout or until we've read enough chars. while (len > 0 && (supervisor_ticks_ms64() - start_ticks < self->timeout_ms)) { if (UART1->STAT_b.DATA_READY) { // Read and advance. data[total_read] = UART1->IO_b.DATA; // Adjust the counters. len--; total_read++; // Reset the timeout on every character read. start_ticks = supervisor_ticks_ms64(); } RUN_BACKGROUND_TASKS; // Allow user to break out of a timeout with a KeyboardInterrupt. if (mp_hal_is_interrupted()) { break; } } } // Now that we've emptied the ringbuf some, fill it up with anything in the // FIFO. This ensures that we'll empty the FIFO as much as possible and // reset the interrupt when we catch up. while (UART1->STAT_b.DATA_READY && ringbuf_num_empty(&self->ringbuf) > 0) { ringbuf_put(&self->ringbuf, (uint8_t)UART1->IO_b.DATA); } // Re-enable irq. if (self->uart_id == 1) { UART1->IER_b.DATA_READY = true; } COMPLETE_MEMORY_READS; if (total_read == 0) { *errcode = EAGAIN; return MP_STREAM_ERROR; } return total_read; } uint32_t common_hal_busio_uart_get_baudrate(busio_uart_obj_t *self) { return self->baudrate; } void common_hal_busio_uart_set_baudrate(busio_uart_obj_t *self, uint32_t baudrate) { self->baudrate = baudrate; } mp_float_t common_hal_busio_uart_get_timeout(busio_uart_obj_t *self) { return (mp_float_t)(self->timeout_ms / 1000.0L); } void common_hal_busio_uart_set_timeout(busio_uart_obj_t *self, mp_float_t timeout) { self->timeout_ms = timeout * 1000; } uint32_t common_hal_busio_uart_rx_characters_available(busio_uart_obj_t *self) { return ringbuf_num_filled(&self->ringbuf); } void common_hal_busio_uart_clear_rx_buffer(busio_uart_obj_t *self) { ringbuf_clear(&self->ringbuf); } bool common_hal_busio_uart_ready_to_tx(busio_uart_obj_t *self) { if (self->tx_pin == NULL) { return false; } if (self->uart_id == 1) { return UART1->STAT_b.TX_READY; } return false; }