#!/usr/bin/env python3 # # This file is part of the MicroPython project, http://micropython.org/ # # The MIT License (MIT) # # Copyright (c) 2019 Damien P. George # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. """ Link .o files to .mpy """ import sys, os, struct, re from elftools.elf import elffile sys.path.append(os.path.dirname(__file__) + "/../py") import makeqstrdata as qstrutil # MicroPython constants MPY_VERSION = 6 MPY_SUB_VERSION = 1 MP_CODE_BYTECODE = 2 MP_CODE_NATIVE_VIPER = 4 MP_NATIVE_ARCH_X86 = 1 MP_NATIVE_ARCH_X64 = 2 MP_NATIVE_ARCH_ARMV6M = 4 MP_NATIVE_ARCH_ARMV7M = 5 MP_NATIVE_ARCH_ARMV7EMSP = 7 MP_NATIVE_ARCH_ARMV7EMDP = 8 MP_NATIVE_ARCH_XTENSA = 9 MP_NATIVE_ARCH_XTENSAWIN = 10 MP_PERSISTENT_OBJ_STR = 5 # Circuitpython: this does not match upstream because we added MP_SCOPE_FLAG_ASYNC MP_SCOPE_FLAG_VIPERRELOC = 0x20 MP_SCOPE_FLAG_VIPERRODATA = 0x40 MP_SCOPE_FLAG_VIPERBSS = 0x80 MP_SMALL_INT_BITS = 31 # ELF constants R_386_32 = 1 R_X86_64_64 = 1 R_XTENSA_32 = 1 R_386_PC32 = 2 R_X86_64_PC32 = 2 R_ARM_ABS32 = 2 R_386_GOT32 = 3 R_ARM_REL32 = 3 R_386_PLT32 = 4 R_X86_64_PLT32 = 4 R_XTENSA_PLT = 6 R_386_GOTOFF = 9 R_386_GOTPC = 10 R_ARM_THM_CALL = 10 R_XTENSA_DIFF32 = 19 R_XTENSA_SLOT0_OP = 20 R_ARM_BASE_PREL = 25 # aka R_ARM_GOTPC R_ARM_GOT_BREL = 26 # aka R_ARM_GOT32 R_ARM_THM_JUMP24 = 30 R_X86_64_GOTPCREL = 9 R_X86_64_REX_GOTPCRELX = 42 R_386_GOT32X = 43 R_XTENSA_PDIFF32 = 59 ################################################################################ # Architecture configuration def asm_jump_x86(entry): return struct.pack("> 11 == 0 or b_off >> 11 == -1, b_off return struct.pack("> 1 & 0x07FF)) def asm_jump_thumb2(entry): b_off = entry - 4 if b_off >> 11 == 0 or b_off >> 11 == -1: # Signed value fits in 12 bits b0 = 0xE000 | (b_off >> 1 & 0x07FF) b1 = 0 else: # Use large jump b0 = 0xF000 | (b_off >> 12 & 0x07FF) b1 = 0xB800 | (b_off >> 1 & 0x7FF) return struct.pack("> 8) class ArchData: def __init__(self, name, mpy_feature, word_size, arch_got, asm_jump, *, separate_rodata=False): self.name = name self.mpy_feature = mpy_feature self.qstr_entry_size = 2 self.word_size = word_size self.arch_got = arch_got self.asm_jump = asm_jump self.separate_rodata = separate_rodata ARCH_DATA = { "x86": ArchData( "EM_386", MP_NATIVE_ARCH_X86 << 2, 4, (R_386_PC32, R_386_GOT32, R_386_GOT32X), asm_jump_x86, ), "x64": ArchData( "EM_X86_64", MP_NATIVE_ARCH_X64 << 2, 8, (R_X86_64_GOTPCREL, R_X86_64_REX_GOTPCRELX), asm_jump_x86, ), "armv6m": ArchData( "EM_ARM", MP_NATIVE_ARCH_ARMV6M << 2, 4, (R_ARM_GOT_BREL,), asm_jump_thumb, ), "armv7m": ArchData( "EM_ARM", MP_NATIVE_ARCH_ARMV7M << 2, 4, (R_ARM_GOT_BREL,), asm_jump_thumb2, ), "armv7emsp": ArchData( "EM_ARM", MP_NATIVE_ARCH_ARMV7EMSP << 2, 4, (R_ARM_GOT_BREL,), asm_jump_thumb2, ), "armv7emdp": ArchData( "EM_ARM", MP_NATIVE_ARCH_ARMV7EMDP << 2, 4, (R_ARM_GOT_BREL,), asm_jump_thumb2, ), "xtensa": ArchData( "EM_XTENSA", MP_NATIVE_ARCH_XTENSA << 2, 4, (R_XTENSA_32, R_XTENSA_PLT), asm_jump_xtensa, ), "xtensawin": ArchData( "EM_XTENSA", MP_NATIVE_ARCH_XTENSAWIN << 2, 4, (R_XTENSA_32, R_XTENSA_PLT), asm_jump_xtensa, separate_rodata=True, ), } ################################################################################ # Helper functions def align_to(value, align): return (value + align - 1) & ~(align - 1) def unpack_u24le(data, offset): return data[offset] | data[offset + 1] << 8 | data[offset + 2] << 16 def pack_u24le(data, offset, value): data[offset] = value & 0xFF data[offset + 1] = value >> 8 & 0xFF data[offset + 2] = value >> 16 & 0xFF def xxd(text): for i in range(0, len(text), 16): print("{:08x}:".format(i), end="") for j in range(4): off = i + j * 4 if off < len(text): d = int.from_bytes(text[off : off + 4], "little") print(" {:08x}".format(d), end="") print() # Smaller numbers are enabled first LOG_LEVEL_1 = 1 LOG_LEVEL_2 = 2 LOG_LEVEL_3 = 3 log_level = LOG_LEVEL_1 def log(level, msg): if level <= log_level: print(msg) ################################################################################ # Qstr extraction def extract_qstrs(source_files): def read_qstrs(f): with open(f) as f: vals = set() objs = set() for line in f: while line: m = re.search(r"MP_OBJ_NEW_QSTR\((MP_QSTR_[A-Za-z0-9_]*)\)", line) if m: objs.add(m.group(1)) else: m = re.search(r"MP_QSTR_[A-Za-z0-9_]*", line) if m: vals.add(m.group()) if m: s = m.span() line = line[: s[0]] + line[s[1] :] else: line = "" return vals, objs static_qstrs = ["MP_QSTR_" + qstrutil.qstr_escape(q) for q in qstrutil.static_qstr_list] qstr_vals = set() qstr_objs = set() for f in source_files: vals, objs = read_qstrs(f) qstr_vals.update(vals) qstr_objs.update(objs) qstr_vals.difference_update(static_qstrs) return static_qstrs, qstr_vals, qstr_objs ################################################################################ # Linker class LinkError(Exception): pass class Section: def __init__(self, name, data, alignment, filename=None): self.filename = filename self.name = name self.data = data self.alignment = alignment self.addr = 0 self.reloc = [] @staticmethod def from_elfsec(elfsec, filename): assert elfsec.header.sh_addr == 0 return Section(elfsec.name, elfsec.data(), elfsec.data_alignment, filename) class GOTEntry: def __init__(self, name, sym, link_addr=0): self.name = name self.sym = sym self.offset = None self.link_addr = link_addr def isexternal(self): return self.sec_name.startswith(".external") def istext(self): return self.sec_name.startswith(".text") def isrodata(self): return self.sec_name.startswith((".rodata", ".data.rel.ro")) def isbss(self): return self.sec_name.startswith(".bss") class LiteralEntry: def __init__(self, value, offset): self.value = value self.offset = offset class LinkEnv: def __init__(self, arch): self.arch = ARCH_DATA[arch] self.sections = [] # list of sections in order of output self.literal_sections = [] # list of literal sections (xtensa only) self.known_syms = {} # dict of symbols that are defined self.unresolved_syms = [] # list of unresolved symbols self.mpy_relocs = [] # list of relocations needed in the output .mpy file def check_arch(self, arch_name): if arch_name != self.arch.name: raise LinkError("incompatible arch") def print_sections(self): log(LOG_LEVEL_2, "sections:") for sec in self.sections: log(LOG_LEVEL_2, " {:08x} {} size={}".format(sec.addr, sec.name, len(sec.data))) def find_addr(self, name): if name in self.known_syms: s = self.known_syms[name] return s.section.addr + s["st_value"] raise LinkError("unknown symbol: {}".format(name)) def build_got_generic(env): env.got_entries = {} for sec in env.sections: for r in sec.reloc: s = r.sym if not ( s.entry["st_info"]["bind"] == "STB_GLOBAL" and r["r_info_type"] in env.arch.arch_got ): continue s_type = s.entry["st_info"]["type"] assert s_type in ("STT_NOTYPE", "STT_FUNC", "STT_OBJECT"), s_type assert s.name if s.name in env.got_entries: continue env.got_entries[s.name] = GOTEntry(s.name, s) def build_got_xtensa(env): env.got_entries = {} env.lit_entries = {} env.xt_literals = {} # Extract the values from the literal table for sec in env.literal_sections: assert len(sec.data) % env.arch.word_size == 0 # Look through literal relocations to find any global pointers that should be GOT entries for r in sec.reloc: s = r.sym s_type = s.entry["st_info"]["type"] assert s_type in ("STT_NOTYPE", "STT_FUNC", "STT_OBJECT", "STT_SECTION"), s_type assert r["r_info_type"] in env.arch.arch_got assert r["r_offset"] % env.arch.word_size == 0 # This entry is a global pointer existing = struct.unpack_from(" {}+{:08x}".format(g.offset, g.name, g.sec_name, g.link_addr), ) def populate_lit(env): log(LOG_LEVEL_2, "LIT: {:08x}".format(env.lit_section.addr)) for lit_entry in env.lit_entries.values(): value = lit_entry.value log(LOG_LEVEL_2, " {:08x} = {:08x}".format(lit_entry.offset, value)) o = env.lit_section.addr + lit_entry.offset env.full_text[o : o + env.arch.word_size] = value.to_bytes(env.arch.word_size, "little") def do_relocation_text(env, text_addr, r): # Extract relevant info about symbol that's being relocated s = r.sym s_bind = s.entry["st_info"]["bind"] s_shndx = s.entry["st_shndx"] s_type = s.entry["st_info"]["type"] r_offset = r["r_offset"] + text_addr r_info_type = r["r_info_type"] try: # only for RELA sections r_addend = r["r_addend"] except KeyError: r_addend = 0 # Default relocation type and name for logging reloc_type = "le32" log_name = None if ( env.arch.name == "EM_386" and r_info_type in (R_386_PC32, R_386_PLT32) or env.arch.name == "EM_X86_64" and r_info_type in (R_X86_64_PC32, R_X86_64_PLT32) or env.arch.name == "EM_ARM" and r_info_type in (R_ARM_REL32, R_ARM_THM_CALL, R_ARM_THM_JUMP24) or s_bind == "STB_LOCAL" and env.arch.name == "EM_XTENSA" and r_info_type == R_XTENSA_32 # not GOT ): # Standard relocation to fixed location within text/rodata if hasattr(s, "resolved"): s = s.resolved sec = s.section if env.arch.separate_rodata and sec.name.startswith(".rodata"): raise LinkError("fixed relocation to rodata with rodata referenced via GOT") if sec.name.startswith(".bss"): raise LinkError( "{}: fixed relocation to bss (bss variables can't be static)".format(s.filename) ) if sec.name.startswith(".external"): raise LinkError( "{}: fixed relocation to external symbol: {}".format(s.filename, s.name) ) addr = sec.addr + s["st_value"] reloc = addr - r_offset + r_addend if r_info_type in (R_ARM_THM_CALL, R_ARM_THM_JUMP24): # Both relocations have the same bit pattern to rewrite: # R_ARM_THM_CALL: bl # R_ARM_THM_JUMP24: b.w reloc_type = "thumb_b" elif ( env.arch.name == "EM_386" and r_info_type == R_386_GOTPC or env.arch.name == "EM_ARM" and r_info_type == R_ARM_BASE_PREL ): # Relocation to GOT address itself assert s.name == "_GLOBAL_OFFSET_TABLE_" addr = env.got_section.addr reloc = addr - r_offset + r_addend elif ( env.arch.name == "EM_386" and r_info_type in (R_386_GOT32, R_386_GOT32X) or env.arch.name == "EM_ARM" and r_info_type == R_ARM_GOT_BREL ): # Relcation pointing to GOT reloc = addr = env.got_entries[s.name].offset elif env.arch.name == "EM_X86_64" and r_info_type in ( R_X86_64_GOTPCREL, R_X86_64_REX_GOTPCRELX, ): # Relcation pointing to GOT got_entry = env.got_entries[s.name] addr = env.got_section.addr + got_entry.offset reloc = addr - r_offset + r_addend elif env.arch.name == "EM_386" and r_info_type == R_386_GOTOFF: # Relocation relative to GOT addr = s.section.addr + s["st_value"] reloc = addr - env.got_section.addr + r_addend elif env.arch.name == "EM_XTENSA" and r_info_type == R_XTENSA_SLOT0_OP: # Relocation pointing to GOT, xtensa specific sec = s.section if sec.name.startswith(".text"): # it looks like R_XTENSA_SLOT0_OP into .text is already correctly relocated return assert sec.name.startswith(".literal"), sec.name lit_idx = "{}+0x{:x}".format(sec.filename, r_addend) lit_ptr = env.xt_literals[lit_idx] if isinstance(lit_ptr, str): addr = env.got_section.addr + env.got_entries[lit_ptr].offset log_name = "GOT {}".format(lit_ptr) else: addr = env.lit_section.addr + env.lit_entries[lit_ptr].offset log_name = "LIT" reloc = addr - r_offset reloc_type = "xtensa_l32r" elif env.arch.name == "EM_XTENSA" and r_info_type in (R_XTENSA_DIFF32, R_XTENSA_PDIFF32): if s.section.name.startswith(".text"): # it looks like R_XTENSA_[P]DIFF32 into .text is already correctly relocated return assert 0 else: # Unknown/unsupported relocation assert 0, r_info_type # Write relocation if reloc_type == "le32": (existing,) = struct.unpack_from("= 0x400000: # 2's complement existing -= 0x800000 new = existing + reloc b_h = (b_h & 0xF800) | (new >> 12) & 0x7FF b_l = (b_l & 0xF800) | (new >> 1) & 0x7FF struct.pack_into("> 8 l32r_imm16 = (l32r_imm16 + reloc >> 2) & 0xFFFF l32r = l32r & 0xFF | l32r_imm16 << 8 pack_u24le(env.full_text, r_offset, l32r) else: assert 0, reloc_type # Log information about relocation if log_name is None: if s_type == "STT_SECTION": log_name = s.section.name else: log_name = s.name log(LOG_LEVEL_3, " {:08x} {} -> {:08x}".format(r_offset, log_name, addr)) def do_relocation_data(env, text_addr, r): s = r.sym s_type = s.entry["st_info"]["type"] r_offset = r["r_offset"] + text_addr r_info_type = r["r_info_type"] try: # only for RELA sections r_addend = r["r_addend"] except KeyError: r_addend = 0 if ( env.arch.name == "EM_386" and r_info_type == R_386_32 or env.arch.name == "EM_X86_64" and r_info_type == R_X86_64_64 or env.arch.name == "EM_ARM" and r_info_type == R_ARM_ABS32 or env.arch.name == "EM_XTENSA" and r_info_type == R_XTENSA_32 ): # Relocation in data.rel.ro to internal/external symbol if env.arch.word_size == 4: struct_type = " {} {:08x}".format(r_offset, log_name, addr)) if env.arch.separate_rodata: data = env.full_rodata else: data = env.full_text (existing,) = struct.unpack_from(struct_type, data, r_offset) if sec.name.startswith((".text", ".rodata", ".data.rel.ro", ".bss")): struct.pack_into(struct_type, data, r_offset, existing + addr) kind = sec.name elif sec.name == ".external.mp_fun_table": assert addr == 0 kind = s.mp_fun_table_offset else: assert 0, sec.name if env.arch.separate_rodata: base = ".rodata" else: base = ".text" env.mpy_relocs.append((base, r_offset, kind)) else: # Unknown/unsupported relocation assert 0, r_info_type def load_object_file(env, felf): with open(felf, "rb") as f: elf = elffile.ELFFile(f) env.check_arch(elf["e_machine"]) # Get symbol table symtab = list(elf.get_section_by_name(".symtab").iter_symbols()) # Load needed sections from ELF file sections_shndx = {} # maps elf shndx to Section object for idx, s in enumerate(elf.iter_sections()): if s.header.sh_type in ("SHT_PROGBITS", "SHT_NOBITS"): if s.data_size == 0: # Ignore empty sections pass elif s.name.startswith((".literal", ".text", ".rodata", ".data.rel.ro", ".bss")): sec = Section.from_elfsec(s, felf) sections_shndx[idx] = sec if s.name.startswith(".literal"): env.literal_sections.append(sec) else: env.sections.append(sec) elif s.name.startswith(".data"): raise LinkError("{}: {} non-empty".format(felf, s.name)) else: # Ignore section pass elif s.header.sh_type in ("SHT_REL", "SHT_RELA"): shndx = s.header.sh_info if shndx in sections_shndx: sec = sections_shndx[shndx] sec.reloc_name = s.name sec.reloc = list(s.iter_relocations()) for r in sec.reloc: r.sym = symtab[r["r_info_sym"]] # Link symbols to their sections, and update known and unresolved symbols for sym in symtab: sym.filename = felf shndx = sym.entry["st_shndx"] if shndx in sections_shndx: # Symbol with associated section sym.section = sections_shndx[shndx] if sym["st_info"]["bind"] == "STB_GLOBAL": # Defined global symbol if sym.name in env.known_syms and not sym.name.startswith( "__x86.get_pc_thunk." ): raise LinkError("duplicate symbol: {}".format(sym.name)) env.known_syms[sym.name] = sym elif sym.entry["st_shndx"] == "SHN_UNDEF" and sym["st_info"]["bind"] == "STB_GLOBAL": # Undefined global symbol, needs resolving env.unresolved_syms.append(sym) def link_objects(env, native_qstr_vals_len, native_qstr_objs_len): # Build GOT information if env.arch.name == "EM_XTENSA": build_got_xtensa(env) else: build_got_generic(env) # Creat GOT section got_size = len(env.got_entries) * env.arch.word_size env.got_section = Section("GOT", bytearray(got_size), env.arch.word_size) if env.arch.name == "EM_XTENSA": env.sections.insert(0, env.got_section) else: env.sections.append(env.got_section) # Create optional literal section if env.arch.name == "EM_XTENSA": lit_size = len(env.lit_entries) * env.arch.word_size env.lit_section = Section("LIT", bytearray(lit_size), env.arch.word_size) env.sections.insert(1, env.lit_section) # Create section to contain mp_native_qstr_table env.qstr_table_section = Section( ".external.qstr_table", bytearray(native_qstr_vals_len * env.arch.qstr_entry_size), env.arch.qstr_entry_size, ) # Create section to contain mp_native_obj_table env.obj_table_section = Section( ".external.obj_table", bytearray(native_qstr_objs_len * env.arch.word_size), env.arch.word_size, ) # Resolve unknown symbols mp_fun_table_sec = Section(".external.mp_fun_table", b"", 0) fun_table = { # Circuitpython: this does not match upstream because we added an item in _mp_fnu_table_t key: 68 + idx for idx, key in enumerate( [ "mp_type_type", "mp_type_str", "mp_type_list", "mp_type_dict", "mp_type_fun_builtin_0", "mp_type_fun_builtin_1", "mp_type_fun_builtin_2", "mp_type_fun_builtin_3", "mp_type_fun_builtin_var", "mp_stream_read_obj", "mp_stream_readinto_obj", "mp_stream_unbuffered_readline_obj", "mp_stream_write_obj", ] ) } for sym in env.unresolved_syms: assert sym["st_value"] == 0 if sym.name == "_GLOBAL_OFFSET_TABLE_": pass elif sym.name == "mp_fun_table": sym.section = Section(".external", b"", 0) elif sym.name == "mp_native_qstr_table": sym.section = env.qstr_table_section elif sym.name == "mp_native_obj_table": sym.section = env.obj_table_section elif sym.name in env.known_syms: sym.resolved = env.known_syms[sym.name] else: if sym.name in fun_table: sym.section = mp_fun_table_sec sym.mp_fun_table_offset = fun_table[sym.name] else: raise LinkError("{}: undefined symbol: {}".format(sym.filename, sym.name)) # Align sections, assign their addresses, and create full_text env.full_text = bytearray(env.arch.asm_jump(8)) # dummy, to be filled in later env.full_rodata = bytearray(0) env.full_bss = bytearray(0) for sec in env.sections: if env.arch.separate_rodata and sec.name.startswith((".rodata", ".data.rel.ro")): data = env.full_rodata elif sec.name.startswith(".bss"): data = env.full_bss else: data = env.full_text sec.addr = align_to(len(data), sec.alignment) data.extend(b"\x00" * (sec.addr - len(data))) data.extend(sec.data) env.print_sections() populate_got(env) if env.arch.name == "EM_XTENSA": populate_lit(env) # Fill in relocations for sec in env.sections: if not sec.reloc: continue log( LOG_LEVEL_3, "{}: {} relocations via {}:".format(sec.filename, sec.name, sec.reloc_name), ) for r in sec.reloc: if sec.name.startswith((".text", ".rodata")): do_relocation_text(env, sec.addr, r) elif sec.name.startswith(".data.rel.ro"): do_relocation_data(env, sec.addr, r) else: assert 0, sec.name ################################################################################ # .mpy output class MPYOutput: def open(self, fname): self.f = open(fname, "wb") self.prev_base = -1 self.prev_offset = -1 def close(self): self.f.close() def write_bytes(self, buf): self.f.write(buf) def write_uint(self, val): b = bytearray() b.insert(0, val & 0x7F) val >>= 7 while val: b.insert(0, 0x80 | (val & 0x7F)) val >>= 7 self.write_bytes(b) def write_qstr(self, s): if s in qstrutil.static_qstr_list: self.write_uint((qstrutil.static_qstr_list.index(s) + 1) << 1 | 1) else: s = bytes(s, "ascii") self.write_uint(len(s) << 1) self.write_bytes(s) self.write_bytes(b"\x00") def write_reloc(self, base, offset, dest, n): need_offset = not (base == self.prev_base and offset == self.prev_offset + 1) self.prev_offset = offset + n - 1 if dest <= 2: dest = (dest << 1) | (n > 1) else: assert 6 <= dest <= 127 assert n == 1 dest = dest << 1 | need_offset assert 0 <= dest <= 0xFE, dest self.write_bytes(bytes([dest])) if need_offset: if base == ".text": base = 0 elif base == ".rodata": base = 1 self.write_uint(offset << 1 | base) if n > 1: self.write_uint(n) def build_mpy(env, entry_offset, fmpy, native_qstr_vals, native_qstr_objs): # Write jump instruction to start of text jump = env.arch.asm_jump(entry_offset) env.full_text[: len(jump)] = jump log(LOG_LEVEL_1, "arch: {}".format(env.arch.name)) log(LOG_LEVEL_1, "text size: {}".format(len(env.full_text))) if len(env.full_rodata): log(LOG_LEVEL_1, "rodata size: {}".format(len(env.full_rodata))) log(LOG_LEVEL_1, "bss size: {}".format(len(env.full_bss))) log(LOG_LEVEL_1, "GOT entries: {}".format(len(env.got_entries))) # xxd(env.full_text) out = MPYOutput() out.open(fmpy) # MPY: header <<<<<<< ours out.write_bytes(bytearray([ord("C"), MPY_VERSION, env.arch.mpy_feature, MP_SMALL_INT_BITS])) ======= out.write_bytes( bytearray( [ord("M"), MPY_VERSION, env.arch.mpy_feature | MPY_SUB_VERSION, MP_SMALL_INT_BITS] ) ) >>>>>>> theirs # MPY: n_qstr out.write_uint(1 + len(native_qstr_vals)) # MPY: n_obj out.write_uint(len(native_qstr_objs)) # MPY: qstr table out.write_qstr(fmpy) # filename for q in native_qstr_vals: out.write_qstr(q) # MPY: object table for q in native_qstr_objs: out.write_bytes(bytearray([MP_PERSISTENT_OBJ_STR])) out.write_uint(len(q)) out.write_bytes(bytes(q, "utf8") + b"\x00") # MPY: kind/len out.write_uint(len(env.full_text) << 3 | (MP_CODE_NATIVE_VIPER - MP_CODE_BYTECODE)) # MPY: machine code out.write_bytes(env.full_text) # MPY: scope_flags scope_flags = MP_SCOPE_FLAG_VIPERRELOC if len(env.full_rodata): scope_flags |= MP_SCOPE_FLAG_VIPERRODATA if len(env.full_bss): scope_flags |= MP_SCOPE_FLAG_VIPERBSS out.write_uint(scope_flags) # MPY: bss and/or rodata if len(env.full_rodata): rodata_const_table_idx = 1 out.write_uint(len(env.full_rodata)) if len(env.full_bss): bss_const_table_idx = 2 out.write_uint(len(env.full_bss)) if len(env.full_rodata): out.write_bytes(env.full_rodata) # MPY: relocation information prev_kind = None for base, addr, kind in env.mpy_relocs: if isinstance(kind, str) and kind.startswith(".text"): kind = 0 elif kind in (".rodata", ".data.rel.ro"): if env.arch.separate_rodata: kind = rodata_const_table_idx else: kind = 0 elif isinstance(kind, str) and kind.startswith(".bss"): kind = bss_const_table_idx elif kind == "mp_native_qstr_table": kind = 6 elif kind == "mp_native_obj_table": kind = 7 elif kind == "mp_fun_table": kind = 8 else: kind = 9 + kind assert addr % env.arch.word_size == 0, addr offset = addr // env.arch.word_size if kind == prev_kind and base == prev_base and offset == prev_offset + 1: prev_n += 1 prev_offset += 1 else: if prev_kind is not None: out.write_reloc(prev_base, prev_offset - prev_n + 1, prev_kind, prev_n) prev_kind = kind prev_base = base prev_offset = offset prev_n = 1 if prev_kind is not None: out.write_reloc(prev_base, prev_offset - prev_n + 1, prev_kind, prev_n) # MPY: sentinel for end of relocations out.write_bytes(b"\xff") out.close() ################################################################################ # main def do_preprocess(args): if args.output is None: assert args.files[0].endswith(".c") args.output = args.files[0][:-1] + "config.h" static_qstrs, qstr_vals, qstr_objs = extract_qstrs(args.files) with open(args.output, "w") as f: print( "#include \n" "typedef uintptr_t mp_uint_t;\n" "typedef intptr_t mp_int_t;\n" "typedef uintptr_t mp_off_t;", file=f, ) for i, q in enumerate(static_qstrs): print("#define %s (%u)" % (q, i + 1), file=f) for i, q in enumerate(sorted(qstr_vals)): print("#define %s (mp_native_qstr_table[%d])" % (q, i + 1), file=f) for i, q in enumerate(sorted(qstr_objs)): print( "#define MP_OBJ_NEW_QSTR_%s ((mp_obj_t)mp_native_obj_table[%d])" % (q, i), file=f, ) print("extern const uint16_t mp_native_qstr_table[];", file=f) print("extern const mp_uint_t mp_native_obj_table[];", file=f) def do_link(args): if args.output is None: assert args.files[0].endswith(".o") args.output = args.files[0][:-1] + "mpy" native_qstr_vals = [] native_qstr_objs = [] if args.qstrs is not None: with open(args.qstrs) as f: for l in f: m = re.match(r"#define MP_QSTR_([A-Za-z0-9_]*) \(mp_native_", l) if m: native_qstr_vals.append(m.group(1)) else: m = re.match(r"#define MP_OBJ_NEW_QSTR_MP_QSTR_([A-Za-z0-9_]*)", l) if m: native_qstr_objs.append(m.group(1)) log(LOG_LEVEL_2, "qstr vals: " + ", ".join(native_qstr_vals)) log(LOG_LEVEL_2, "qstr objs: " + ", ".join(native_qstr_objs)) env = LinkEnv(args.arch) try: for file in args.files: load_object_file(env, file) link_objects(env, len(native_qstr_vals), len(native_qstr_objs)) build_mpy(env, env.find_addr("mpy_init"), args.output, native_qstr_vals, native_qstr_objs) except LinkError as er: print("LinkError:", er.args[0]) sys.exit(1) def main(): import argparse cmd_parser = argparse.ArgumentParser(description="Run scripts on the pyboard.") cmd_parser.add_argument( "--verbose", "-v", action="count", default=1, help="increase verbosity" ) cmd_parser.add_argument("--arch", default="x64", help="architecture") cmd_parser.add_argument("--preprocess", action="store_true", help="preprocess source files") cmd_parser.add_argument("--qstrs", default=None, help="file defining additional qstrs") cmd_parser.add_argument( "--output", "-o", default=None, help="output .mpy file (default to input with .o->.mpy)" ) cmd_parser.add_argument("files", nargs="+", help="input files") args = cmd_parser.parse_args() global log_level log_level = args.verbose if args.preprocess: do_preprocess(args) else: do_link(args) if __name__ == "__main__": main()