/* * This file is part of the Micro Python project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2013, 2014 Damien P. George * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include #include #include "py/mpstate.h" #include "py/qstr.h" #include "py/gc.h" // NOTE: we are using linear arrays to store and search for qstr's (unique strings, interned strings) // ultimately we will replace this with a static hash table of some kind // also probably need to include the length in the string data, to allow null bytes in the string #if 0 // print debugging info #define DEBUG_printf DEBUG_printf #else // don't print debugging info #define DEBUG_printf(...) (void)0 #endif // A qstr is an index into the qstr pool. // The data for a qstr contains (hash, length, data): // - hash (configurable number of bytes) // - length (configurable number of bytes) // - data ("length" number of bytes) // - \0 terminated (so they can be printed using printf) #if MICROPY_QSTR_BYTES_IN_HASH == 1 #define Q_HASH_MASK (0xff) #define Q_GET_HASH(q) ((mp_uint_t)(q)[0]) #define Q_SET_HASH(q, hash) do { (q)[0] = (hash); } while (0) #elif MICROPY_QSTR_BYTES_IN_HASH == 2 #define Q_HASH_MASK (0xffff) #define Q_GET_HASH(q) ((mp_uint_t)(q)[0] | ((mp_uint_t)(q)[1] << 8)) #define Q_SET_HASH(q, hash) do { (q)[0] = (hash); (q)[1] = (hash) >> 8; } while (0) #else #error unimplemented qstr hash decoding #endif #define Q_GET_ALLOC(q) (MICROPY_QSTR_BYTES_IN_HASH + MICROPY_QSTR_BYTES_IN_LEN + Q_GET_LENGTH(q) + 1) #define Q_GET_DATA(q) ((q) + MICROPY_QSTR_BYTES_IN_HASH + MICROPY_QSTR_BYTES_IN_LEN) #if MICROPY_QSTR_BYTES_IN_LEN == 1 #define Q_GET_LENGTH(q) ((q)[MICROPY_QSTR_BYTES_IN_HASH]) #define Q_SET_LENGTH(q, len) do { (q)[MICROPY_QSTR_BYTES_IN_HASH] = (len); } while (0) #elif MICROPY_QSTR_BYTES_IN_LEN == 2 #define Q_GET_LENGTH(q) ((q)[MICROPY_QSTR_BYTES_IN_HASH] | ((q)[MICROPY_QSTR_BYTES_IN_HASH + 1] << 8)) #define Q_SET_LENGTH(q, len) do { (q)[MICROPY_QSTR_BYTES_IN_HASH] = (len); (q)[MICROPY_QSTR_BYTES_IN_HASH + 1] = (len) >> 8; } while (0) #else #error unimplemented qstr length decoding #endif // this must match the equivalent function in makeqstrdata.py mp_uint_t qstr_compute_hash(const byte *data, size_t len) { // djb2 algorithm; see http://www.cse.yorku.ca/~oz/hash.html mp_uint_t hash = 5381; for (const byte *top = data + len; data < top; data++) { hash = ((hash << 5) + hash) ^ (*data); // hash * 33 ^ data } hash &= Q_HASH_MASK; // Make sure that valid hash is never zero, zero means "hash not computed" if (hash == 0) { hash++; } return hash; } STATIC const qstr_pool_t const_pool = { NULL, // no previous pool 0, // no previous pool 10, // set so that the first dynamically allocated pool is twice this size; must be <= the len (just below) MP_QSTR_number_of, // corresponds to number of strings in array just below { #define QDEF(id, str) str, #include "genhdr/qstrdefs.generated.h" #undef QDEF }, }; void qstr_init(void) { MP_STATE_VM(last_pool) = (qstr_pool_t*)&const_pool; // we won't modify the const_pool since it has no allocated room left MP_STATE_VM(qstr_last_chunk) = NULL; } STATIC const byte *find_qstr(qstr q) { // search pool for this qstr for (qstr_pool_t *pool = MP_STATE_VM(last_pool); pool != NULL; pool = pool->prev) { if (q >= pool->total_prev_len) { return pool->qstrs[q - pool->total_prev_len]; } } // not found return 0; } STATIC qstr qstr_add(const byte *q_ptr) { DEBUG_printf("QSTR: add hash=%d len=%d data=%.*s\n", Q_GET_HASH(q_ptr), Q_GET_LENGTH(q_ptr), Q_GET_LENGTH(q_ptr), Q_GET_DATA(q_ptr)); // make sure we have room in the pool for a new qstr if (MP_STATE_VM(last_pool)->len >= MP_STATE_VM(last_pool)->alloc) { qstr_pool_t *pool = m_new_obj_var(qstr_pool_t, const char*, MP_STATE_VM(last_pool)->alloc * 2); pool->prev = MP_STATE_VM(last_pool); pool->total_prev_len = MP_STATE_VM(last_pool)->total_prev_len + MP_STATE_VM(last_pool)->len; pool->alloc = MP_STATE_VM(last_pool)->alloc * 2; pool->len = 0; MP_STATE_VM(last_pool) = pool; DEBUG_printf("QSTR: allocate new pool of size %d\n", MP_STATE_VM(last_pool)->alloc); } // add the new qstr MP_STATE_VM(last_pool)->qstrs[MP_STATE_VM(last_pool)->len++] = q_ptr; // return id for the newly-added qstr return MP_STATE_VM(last_pool)->total_prev_len + MP_STATE_VM(last_pool)->len - 1; } qstr qstr_find_strn(const char *str, size_t str_len) { // work out hash of str mp_uint_t str_hash = qstr_compute_hash((const byte*)str, str_len); // search pools for the data for (qstr_pool_t *pool = MP_STATE_VM(last_pool); pool != NULL; pool = pool->prev) { for (const byte **q = pool->qstrs, **q_top = pool->qstrs + pool->len; q < q_top; q++) { if (Q_GET_HASH(*q) == str_hash && Q_GET_LENGTH(*q) == str_len && memcmp(Q_GET_DATA(*q), str, str_len) == 0) { return pool->total_prev_len + (q - pool->qstrs); } } } // not found; return null qstr return 0; } qstr qstr_from_str(const char *str) { return qstr_from_strn(str, strlen(str)); } qstr qstr_from_strn(const char *str, size_t len) { assert(len < (1 << (8 * MICROPY_QSTR_BYTES_IN_LEN))); qstr q = qstr_find_strn(str, len); if (q == 0) { // qstr does not exist in interned pool so need to add it // compute number of bytes needed to intern this string mp_uint_t n_bytes = MICROPY_QSTR_BYTES_IN_HASH + MICROPY_QSTR_BYTES_IN_LEN + len + 1; if (MP_STATE_VM(qstr_last_chunk) != NULL && MP_STATE_VM(qstr_last_used) + n_bytes > MP_STATE_VM(qstr_last_alloc)) { // not enough room at end of previously interned string so try to grow byte *new_p = m_renew_maybe(byte, MP_STATE_VM(qstr_last_chunk), MP_STATE_VM(qstr_last_alloc), MP_STATE_VM(qstr_last_alloc) + n_bytes, false); if (new_p == NULL) { // could not grow existing memory; shrink it to fit previous (void)m_renew(byte, MP_STATE_VM(qstr_last_chunk), MP_STATE_VM(qstr_last_alloc), MP_STATE_VM(qstr_last_used)); MP_STATE_VM(qstr_last_chunk) = NULL; } else { // could grow existing memory MP_STATE_VM(qstr_last_alloc) += n_bytes; } } if (MP_STATE_VM(qstr_last_chunk) == NULL) { // no existing memory for the interned string so allocate a new chunk size_t al = n_bytes; if (al < MICROPY_ALLOC_QSTR_CHUNK_INIT) { al = MICROPY_ALLOC_QSTR_CHUNK_INIT; } MP_STATE_VM(qstr_last_chunk) = m_new_maybe(byte, al); if (MP_STATE_VM(qstr_last_chunk) == NULL) { // failed to allocate a large chunk so try with exact size MP_STATE_VM(qstr_last_chunk) = m_new(byte, n_bytes); al = n_bytes; } MP_STATE_VM(qstr_last_alloc) = al; MP_STATE_VM(qstr_last_used) = 0; } // allocate memory from the chunk for this new interned string's data byte *q_ptr = MP_STATE_VM(qstr_last_chunk) + MP_STATE_VM(qstr_last_used); MP_STATE_VM(qstr_last_used) += n_bytes; // store the interned strings' data mp_uint_t hash = qstr_compute_hash((const byte*)str, len); Q_SET_HASH(q_ptr, hash); Q_SET_LENGTH(q_ptr, len); memcpy(q_ptr + MICROPY_QSTR_BYTES_IN_HASH + MICROPY_QSTR_BYTES_IN_LEN, str, len); q_ptr[MICROPY_QSTR_BYTES_IN_HASH + MICROPY_QSTR_BYTES_IN_LEN + len] = '\0'; q = qstr_add(q_ptr); } return q; } byte *qstr_build_start(size_t len, byte **q_ptr) { assert(len < (1 << (8 * MICROPY_QSTR_BYTES_IN_LEN))); *q_ptr = m_new(byte, MICROPY_QSTR_BYTES_IN_HASH + MICROPY_QSTR_BYTES_IN_LEN + len + 1); Q_SET_LENGTH(*q_ptr, len); return Q_GET_DATA(*q_ptr); } qstr qstr_build_end(byte *q_ptr) { qstr q = qstr_find_strn((const char*)Q_GET_DATA(q_ptr), Q_GET_LENGTH(q_ptr)); if (q == 0) { mp_uint_t len = Q_GET_LENGTH(q_ptr); mp_uint_t hash = qstr_compute_hash(Q_GET_DATA(q_ptr), len); Q_SET_HASH(q_ptr, hash); q_ptr[MICROPY_QSTR_BYTES_IN_HASH + MICROPY_QSTR_BYTES_IN_LEN + len] = '\0'; q = qstr_add(q_ptr); } else { m_del(byte, q_ptr, Q_GET_ALLOC(q_ptr)); } return q; } mp_uint_t qstr_hash(qstr q) { return Q_GET_HASH(find_qstr(q)); } size_t qstr_len(qstr q) { const byte *qd = find_qstr(q); return Q_GET_LENGTH(qd); } // XXX to remove! const char *qstr_str(qstr q) { const byte *qd = find_qstr(q); return (const char*)Q_GET_DATA(qd); } const byte *qstr_data(qstr q, size_t *len) { const byte *qd = find_qstr(q); *len = Q_GET_LENGTH(qd); return Q_GET_DATA(qd); } void qstr_pool_info(mp_uint_t *n_pool, mp_uint_t *n_qstr, mp_uint_t *n_str_data_bytes, mp_uint_t *n_total_bytes) { *n_pool = 0; *n_qstr = 0; *n_str_data_bytes = 0; *n_total_bytes = 0; for (qstr_pool_t *pool = MP_STATE_VM(last_pool); pool != NULL && pool != &const_pool; pool = pool->prev) { *n_pool += 1; *n_qstr += pool->len; for (const byte **q = pool->qstrs, **q_top = pool->qstrs + pool->len; q < q_top; q++) { *n_str_data_bytes += Q_GET_ALLOC(*q); } #if MICROPY_ENABLE_GC *n_total_bytes += gc_nbytes(pool); // this counts actual bytes used in heap #else *n_total_bytes += sizeof(qstr_pool_t) + sizeof(qstr) * pool->alloc; #endif } *n_total_bytes += *n_str_data_bytes; } #if MICROPY_PY_MICROPYTHON_MEM_INFO void qstr_dump_data(void) { for (qstr_pool_t *pool = MP_STATE_VM(last_pool); pool != NULL && pool != &const_pool; pool = pool->prev) { for (const byte **q = pool->qstrs, **q_top = pool->qstrs + pool->len; q < q_top; q++) { mp_printf(&mp_plat_print, "Q(%s)\n", Q_GET_DATA(*q)); } } } #endif