/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2018 Scott Shawcroft for Adafruit Industries * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "clocks.h" #include "hpl_gclk_config.h" #include "bindings/samd/Clock.h" #include "shared-bindings/microcontroller/__init__.h" #include "py/runtime.h" bool gclk_enabled(uint8_t gclk) { common_hal_mcu_disable_interrupts(); // Explicitly do a byte write so the peripheral knows we're just wanting to read the channel // rather than write to it. *((uint8_t*) &GCLK->GENCTRL.reg) = gclk; while (GCLK->STATUS.bit.SYNCBUSY == 1) {} bool enabled = GCLK->GENCTRL.bit.GENEN; common_hal_mcu_enable_interrupts(); return enabled; } void disable_gclk(uint8_t gclk) { while (GCLK->STATUS.bit.SYNCBUSY == 1) {} GCLK->GENCTRL.reg = GCLK_GENCTRL_ID(gclk); while (GCLK->STATUS.bit.SYNCBUSY == 1) {} } void connect_gclk_to_peripheral(uint8_t gclk, uint8_t peripheral) { GCLK->CLKCTRL.reg = GCLK_CLKCTRL_ID(peripheral) | GCLK_CLKCTRL_GEN(gclk) | GCLK_CLKCTRL_CLKEN; } void disconnect_gclk_from_peripheral(uint8_t gclk, uint8_t peripheral) { GCLK->CLKCTRL.reg = GCLK_CLKCTRL_ID(peripheral) | GCLK_CLKCTRL_GEN(gclk); } void enable_clock_generator(uint8_t gclk, uint32_t source, uint16_t divisor) { uint32_t divsel = 0; if (gclk == 2 && divisor > 31) { divsel = GCLK_GENCTRL_DIVSEL; for (int i = 15; i > 4; i++) { if (divisor & (1 << i)) { divisor = i - 1; break; } } } GCLK->GENDIV.reg = GCLK_GENDIV_ID(gclk) | GCLK_GENDIV_DIV(divisor); GCLK->GENCTRL.reg = GCLK_GENCTRL_ID(gclk) | GCLK_GENCTRL_SRC(source) | divsel | GCLK_GENCTRL_OE | GCLK_GENCTRL_GENEN; while (GCLK->STATUS.bit.SYNCBUSY != 0) {} } void disable_clock_generator(uint8_t gclk) { GCLK->GENCTRL.reg = GCLK_GENCTRL_ID(gclk); while (GCLK->STATUS.bit.SYNCBUSY != 0) {} } static void init_clock_source_osc8m(void) { // Preserve CALIB and FRANGE SYSCTRL->OSC8M.bit.ONDEMAND = 0; SYSCTRL->OSC8M.bit.PRESC = 3; SYSCTRL->OSC8M.bit.ENABLE = 1; while (!SYSCTRL->PCLKSR.bit.OSC8MRDY) {} } static void init_clock_source_osc32k(void) { uint32_t calib = (*((uint32_t *)FUSES_OSC32K_CAL_ADDR) & FUSES_OSC32K_CAL_Msk) >> FUSES_OSC32K_CAL_Pos; SYSCTRL->OSC32K.reg = SYSCTRL_OSC32K_CALIB(calib) | SYSCTRL_OSC32K_EN32K | SYSCTRL_OSC32K_ENABLE; while (!SYSCTRL->PCLKSR.bit.OSC32KRDY) {} } static void init_clock_source_xosc32k(void) { SYSCTRL->XOSC32K.reg = SYSCTRL_XOSC32K_EN32K | SYSCTRL_XOSC32K_XTALEN | SYSCTRL_XOSC32K_ENABLE; while (!SYSCTRL->PCLKSR.bit.XOSC32KRDY) {} } static void init_clock_source_dfll48m(void) { SYSCTRL->DFLLCTRL.reg = SYSCTRL_DFLLCTRL_ENABLE; while (!SYSCTRL->PCLKSR.bit.DFLLRDY) {} SYSCTRL->DFLLMUL.reg = SYSCTRL_DFLLMUL_CSTEP(1) | SYSCTRL_DFLLMUL_FSTEP(1) | SYSCTRL_DFLLMUL_MUL(48000); uint32_t coarse = (*((uint32_t *)FUSES_DFLL48M_COARSE_CAL_ADDR) & FUSES_DFLL48M_COARSE_CAL_Msk) >> FUSES_DFLL48M_COARSE_CAL_Pos; if (coarse == 0x3f) coarse = 0x1f; SYSCTRL->DFLLVAL.reg = SYSCTRL_DFLLVAL_COARSE(coarse) | SYSCTRL_DFLLVAL_FINE(512); SYSCTRL->DFLLCTRL.reg = SYSCTRL_DFLLCTRL_CCDIS | SYSCTRL_DFLLCTRL_USBCRM | SYSCTRL_DFLLCTRL_MODE | SYSCTRL_DFLLCTRL_ENABLE; while (!SYSCTRL->PCLKSR.bit.DFLLRDY) {} while (GCLK->STATUS.bit.SYNCBUSY) {} } void clock_init(void) { init_clock_source_osc8m(); if (board_has_crystal()) init_clock_source_xosc32k(); else init_clock_source_osc32k(); enable_clock_generator(0, GCLK_GENCTRL_SRC_DFLL48M_Val, 1); enable_clock_generator(1, GCLK_GENCTRL_SRC_DFLL48M_Val, 150); init_clock_source_dfll48m(); if (board_has_crystal()) enable_clock_generator(2, GCLK_GENCTRL_SRC_XOSC32K_Val, 32); else enable_clock_generator(2, GCLK_GENCTRL_SRC_OSC32K_Val, 32); } static bool clk_enabled(uint8_t clk) { common_hal_mcu_disable_interrupts(); *((uint8_t*) &GCLK->CLKCTRL.reg) = clk; while (GCLK->STATUS.bit.SYNCBUSY == 1) {} bool enabled = GCLK->CLKCTRL.bit.CLKEN; common_hal_mcu_enable_interrupts(); return enabled; } static uint8_t clk_get_generator(uint8_t clk) { common_hal_mcu_disable_interrupts(); *((uint8_t*) &GCLK->CLKCTRL.reg) = clk; while (GCLK->STATUS.bit.SYNCBUSY == 1) {} uint8_t gen = GCLK->CLKCTRL.bit.GEN; common_hal_mcu_enable_interrupts(); return gen; } static uint8_t generator_get_source(uint8_t gen) { common_hal_mcu_disable_interrupts(); *((uint8_t*) &GCLK->GENCTRL.reg) = gen; while (GCLK->STATUS.bit.SYNCBUSY == 1) {} uint8_t src = GCLK->GENCTRL.bit.SRC; common_hal_mcu_enable_interrupts(); return src; } static bool osc_enabled(uint8_t index) { switch (index) { case GCLK_SOURCE_XOSC: return SYSCTRL->XOSC.bit.ENABLE; // TODO: GCLK_SOURCE_GCLKIN // TODO: GCLK_SOURCE_GCLKGEN1 case GCLK_SOURCE_OSCULP32K: return true; case GCLK_SOURCE_OSC32K: return SYSCTRL->OSC32K.bit.ENABLE; case GCLK_SOURCE_XOSC32K: return SYSCTRL->XOSC32K.bit.ENABLE; case GCLK_SOURCE_OSC8M: return SYSCTRL->OSC8M.bit.ENABLE; case GCLK_SOURCE_DFLL48M: return SYSCTRL->DFLLCTRL.bit.ENABLE; case GCLK_SOURCE_DPLL96M: return SYSCTRL->DPLLCTRLA.bit.ENABLE; }; return false; } static uint32_t osc_get_frequency(uint8_t index) { switch (index) { case GCLK_SOURCE_XOSC: return 0; // unknown 0.4-32MHz // TODO: GCLK_SOURCE_GCLKIN // TODO: GCLK_SOURCE_GCLKGEN1 case GCLK_SOURCE_OSCULP32K: case GCLK_SOURCE_OSC32K: case GCLK_SOURCE_XOSC32K: return 32768; case GCLK_SOURCE_OSC8M: return 8000000; case GCLK_SOURCE_DFLL48M: return 48000000; case GCLK_SOURCE_DPLL96M: return 96000000; } return 0; } bool clock_get_enabled(uint8_t type, uint8_t index) { if (type == 0) return osc_enabled(index); if (type == 1) return clk_enabled(index); if (type == 2) return SysTick->CTRL & SysTick_CTRL_ENABLE_Msk; return false; } bool clock_get_parent(uint8_t type, uint8_t index, uint8_t *p_type, uint8_t *p_index) { if (type == 1 && index <= 0x24 && clk_enabled(index)) { *p_type = 0; *p_index = generator_get_source(clk_get_generator(index)); return true; } if (type == 2 && index == 0) { *p_type = 0; *p_index = generator_get_source(0); return true; } return false; } uint32_t clock_get_frequency(uint8_t type, uint8_t index) { if (type == 0) { return osc_get_frequency(index); } if (type == 1) { if (!clk_enabled(index)) return 0; uint8_t gen = clk_get_generator(index); common_hal_mcu_disable_interrupts(); *((uint8_t*) &GCLK->GENCTRL.reg) = gen; *((uint8_t*) &GCLK->GENDIV.reg) = gen; while (GCLK->STATUS.bit.SYNCBUSY == 1) {} uint8_t src = GCLK->GENCTRL.bit.SRC; uint32_t div; if (GCLK->GENCTRL.bit.DIVSEL) { div = 1 << (GCLK->GENDIV.bit.DIV + 1); } else { div = GCLK->GENDIV.bit.DIV; if (!div) div = 1; } common_hal_mcu_enable_interrupts(); return osc_get_frequency(src) / div; } if (type == 2 && index == 0) { return clock_get_frequency(0, generator_get_source(0)) / SysTick->LOAD; } return 0; } uint32_t clock_get_calibration(uint8_t type, uint8_t index) { if (type == 0) { switch (index) { case GCLK_SOURCE_OSCULP32K: return SYSCTRL->OSCULP32K.bit.CALIB; case GCLK_SOURCE_OSC32K: return SYSCTRL->OSC32K.bit.CALIB; case GCLK_SOURCE_OSC8M: return SYSCTRL->OSC8M.bit.CALIB; }; } if (type == 2 && index == 0) { return SysTick->LOAD + 1; } return 0; } int clock_set_calibration(uint8_t type, uint8_t index, uint32_t val) { if (type == 0) { switch (index) { case GCLK_SOURCE_OSCULP32K: if (val > 0x1f) return -1; SYSCTRL->OSCULP32K.bit.CALIB = val; return 0; case GCLK_SOURCE_OSC32K: if (val > 0x7f) return -1; SYSCTRL->OSC32K.bit.CALIB = val; return 0; case GCLK_SOURCE_OSC8M: if (val > 0xfff) return -1; SYSCTRL->OSC8M.bit.CALIB = val; return 0; }; } if (type == 2 && index == 0) { if (val < 0x1000 || val > 0x1000000) return -1; SysTick->LOAD = val - 1; return 0; } return -2; // calibration is read only } #ifdef SAMD21_EXPOSE_ALL_CLOCKS CLOCK_SOURCE(XOSC); CLOCK_SOURCE(GCLKIN); CLOCK_SOURCE(GCLKGEN1); CLOCK_SOURCE(OSCULP32K); #endif CLOCK_SOURCE(OSC32K); CLOCK_SOURCE(XOSC32K); #ifdef SAMD21_EXPOSE_ALL_CLOCKS CLOCK_SOURCE(OSC8M); CLOCK_SOURCE(DFLL48M); CLOCK_SOURCE(DPLL96M); CLOCK_GCLK_(SYSCTRL, DFLL48); CLOCK_GCLK_(SYSCTRL, FDPLL); CLOCK_GCLK_(SYSCTRL, FDPLL32K); CLOCK_GCLK(WDT); #endif CLOCK_GCLK(RTC); #ifdef SAMD21_EXPOSE_ALL_CLOCKS CLOCK_GCLK(EIC); CLOCK_GCLK(USB); CLOCK_GCLK_(EVSYS, 0); CLOCK_GCLK_(EVSYS, 1); CLOCK_GCLK_(EVSYS, 2); CLOCK_GCLK_(EVSYS, 3); CLOCK_GCLK_(EVSYS, 4); CLOCK_GCLK_(EVSYS, 5); CLOCK_GCLK_(EVSYS, 6); CLOCK_GCLK_(EVSYS, 7); CLOCK_GCLK_(EVSYS, 8); CLOCK_GCLK_(EVSYS, 9); CLOCK_GCLK_(EVSYS, 10); CLOCK_GCLK_(EVSYS, 11); CLOCK(SERCOMx_SLOW, 1, 19); CLOCK_GCLK_(SERCOM0, CORE); CLOCK_GCLK_(SERCOM1, CORE); CLOCK_GCLK_(SERCOM2, CORE); CLOCK_GCLK_(SERCOM3, CORE); CLOCK_GCLK_(SERCOM4, CORE); CLOCK_GCLK_(SERCOM5, CORE); CLOCK(TCC0_TCC1, 1, 26); CLOCK(TCC2_TCC3, 1, 27); CLOCK(TC4_TC5, 1, 28); CLOCK(TC6_TC7, 1, 29); CLOCK_GCLK(ADC); CLOCK_GCLK_(AC, DIG); CLOCK_GCLK_(AC, ANA); CLOCK_GCLK(DAC); CLOCK_GCLK(PTC); CLOCK_GCLK_(I2S, 0); CLOCK_GCLK_(I2S, 1); CLOCK(SYSTICK, 2, 0); #endif STATIC const mp_rom_map_elem_t samd_clock_global_dict_table[] = { #ifdef SAMD21_EXPOSE_ALL_CLOCKS CLOCK_ENTRY(XOSC), CLOCK_ENTRY(GCLKIN), CLOCK_ENTRY(GCLKGEN1), CLOCK_ENTRY(OSCULP32K), #endif CLOCK_ENTRY(OSC32K), CLOCK_ENTRY(XOSC32K), #ifdef SAMD21_EXPOSE_ALL_CLOCKS CLOCK_ENTRY(OSC8M), CLOCK_ENTRY(DFLL48M), CLOCK_ENTRY(DPLL96M), CLOCK_ENTRY_(SYSCTRL, DFLL48), CLOCK_ENTRY_(SYSCTRL, FDPLL), CLOCK_ENTRY_(SYSCTRL, FDPLL32K), CLOCK_ENTRY(WDT), #endif CLOCK_ENTRY(RTC), #ifdef SAMD21_EXPOSE_ALL_CLOCKS CLOCK_ENTRY(EIC), CLOCK_ENTRY(USB), CLOCK_ENTRY_(EVSYS, 0), CLOCK_ENTRY_(EVSYS, 1), CLOCK_ENTRY_(EVSYS, 2), CLOCK_ENTRY_(EVSYS, 3), CLOCK_ENTRY_(EVSYS, 4), CLOCK_ENTRY_(EVSYS, 5), CLOCK_ENTRY_(EVSYS, 6), CLOCK_ENTRY_(EVSYS, 7), CLOCK_ENTRY_(EVSYS, 8), CLOCK_ENTRY_(EVSYS, 9), CLOCK_ENTRY_(EVSYS, 10), CLOCK_ENTRY_(EVSYS, 11), CLOCK_ENTRY(SERCOMx_SLOW), CLOCK_ENTRY_(SERCOM0, CORE), CLOCK_ENTRY_(SERCOM1, CORE), CLOCK_ENTRY_(SERCOM2, CORE), CLOCK_ENTRY_(SERCOM3, CORE), CLOCK_ENTRY_(SERCOM4, CORE), CLOCK_ENTRY_(SERCOM5, CORE), CLOCK_ENTRY(TCC0_TCC1), CLOCK_ENTRY(TCC2_TCC3), CLOCK_ENTRY(TC4_TC5), CLOCK_ENTRY(TC6_TC7), CLOCK_ENTRY(ADC), CLOCK_ENTRY_(AC, DIG), CLOCK_ENTRY_(AC, ANA), CLOCK_ENTRY(DAC), CLOCK_ENTRY(PTC), CLOCK_ENTRY_(I2S, 0), CLOCK_ENTRY_(I2S, 1), CLOCK_ENTRY(SYSTICK), #endif }; MP_DEFINE_CONST_DICT(samd_clock_globals, samd_clock_global_dict_table);