/* * This file is part of the Micro Python project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2013, 2014 Damien P. George * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include #include #include #include "mpconfig.h" #include "misc.h" #include "gc.h" #include "qstr.h" #include "obj.h" #include "runtime.h" #if MICROPY_ENABLE_GC #if 0 // print debugging info #define DEBUG_PRINT (1) #define DEBUG_printf DEBUG_printf #else // don't print debugging info #define DEBUG_printf(...) (void)0 #endif // make this 1 to dump the heap each time it changes #define EXTENSIVE_HEAP_PROFILING (0) #define WORDS_PER_BLOCK (4) #define BYTES_PER_BLOCK (WORDS_PER_BLOCK * BYTES_PER_WORD) #define STACK_SIZE (64) // tunable; minimum is 1 STATIC byte *gc_alloc_table_start; STATIC mp_uint_t gc_alloc_table_byte_len; #if MICROPY_ENABLE_FINALISER STATIC byte *gc_finaliser_table_start; #endif STATIC mp_uint_t *gc_pool_start; STATIC mp_uint_t *gc_pool_end; STATIC int gc_stack_overflow; STATIC mp_uint_t gc_stack[STACK_SIZE]; STATIC mp_uint_t *gc_sp; STATIC mp_uint_t gc_lock_depth; STATIC mp_uint_t gc_last_free_atb_index; // ATB = allocation table byte // 0b00 = FREE -- free block // 0b01 = HEAD -- head of a chain of blocks // 0b10 = TAIL -- in the tail of a chain of blocks // 0b11 = MARK -- marked head block #define AT_FREE (0) #define AT_HEAD (1) #define AT_TAIL (2) #define AT_MARK (3) #define BLOCKS_PER_ATB (4) #define ATB_MASK_0 (0x03) #define ATB_MASK_1 (0x0c) #define ATB_MASK_2 (0x30) #define ATB_MASK_3 (0xc0) #define ATB_0_IS_FREE(a) (((a) & ATB_MASK_0) == 0) #define ATB_1_IS_FREE(a) (((a) & ATB_MASK_1) == 0) #define ATB_2_IS_FREE(a) (((a) & ATB_MASK_2) == 0) #define ATB_3_IS_FREE(a) (((a) & ATB_MASK_3) == 0) #define BLOCK_SHIFT(block) (2 * ((block) & (BLOCKS_PER_ATB - 1))) #define ATB_GET_KIND(block) ((gc_alloc_table_start[(block) / BLOCKS_PER_ATB] >> BLOCK_SHIFT(block)) & 3) #define ATB_ANY_TO_FREE(block) do { gc_alloc_table_start[(block) / BLOCKS_PER_ATB] &= (~(AT_MARK << BLOCK_SHIFT(block))); } while (0) #define ATB_FREE_TO_HEAD(block) do { gc_alloc_table_start[(block) / BLOCKS_PER_ATB] |= (AT_HEAD << BLOCK_SHIFT(block)); } while (0) #define ATB_FREE_TO_TAIL(block) do { gc_alloc_table_start[(block) / BLOCKS_PER_ATB] |= (AT_TAIL << BLOCK_SHIFT(block)); } while (0) #define ATB_HEAD_TO_MARK(block) do { gc_alloc_table_start[(block) / BLOCKS_PER_ATB] |= (AT_MARK << BLOCK_SHIFT(block)); } while (0) #define ATB_MARK_TO_HEAD(block) do { gc_alloc_table_start[(block) / BLOCKS_PER_ATB] &= (~(AT_TAIL << BLOCK_SHIFT(block))); } while (0) #define BLOCK_FROM_PTR(ptr) (((ptr) - (mp_uint_t)gc_pool_start) / BYTES_PER_BLOCK) #define PTR_FROM_BLOCK(block) (((block) * BYTES_PER_BLOCK + (mp_uint_t)gc_pool_start)) #define ATB_FROM_BLOCK(bl) ((bl) / BLOCKS_PER_ATB) #if MICROPY_ENABLE_FINALISER // FTB = finaliser table byte // if set, then the corresponding block may have a finaliser #define BLOCKS_PER_FTB (8) #define FTB_GET(block) ((gc_finaliser_table_start[(block) / BLOCKS_PER_FTB] >> ((block) & 7)) & 1) #define FTB_SET(block) do { gc_finaliser_table_start[(block) / BLOCKS_PER_FTB] |= (1 << ((block) & 7)); } while (0) #define FTB_CLEAR(block) do { gc_finaliser_table_start[(block) / BLOCKS_PER_FTB] &= (~(1 << ((block) & 7))); } while (0) #endif // TODO waste less memory; currently requires that all entries in alloc_table have a corresponding block in pool void gc_init(void *start, void *end) { // align end pointer on block boundary end = (void*)((mp_uint_t)end & (~(BYTES_PER_BLOCK - 1))); DEBUG_printf("Initializing GC heap: %p..%p = " UINT_FMT " bytes\n", start, end, (byte*)end - (byte*)start); // calculate parameters for GC (T=total, A=alloc table, F=finaliser table, P=pool; all in bytes): // T = A + F + P // F = A * BLOCKS_PER_ATB / BLOCKS_PER_FTB // P = A * BLOCKS_PER_ATB * BYTES_PER_BLOCK // => T = A * (1 + BLOCKS_PER_ATB / BLOCKS_PER_FTB + BLOCKS_PER_ATB * BYTES_PER_BLOCK) mp_uint_t total_byte_len = (byte*)end - (byte*)start; #if MICROPY_ENABLE_FINALISER gc_alloc_table_byte_len = total_byte_len * BITS_PER_BYTE / (BITS_PER_BYTE + BITS_PER_BYTE * BLOCKS_PER_ATB / BLOCKS_PER_FTB + BITS_PER_BYTE * BLOCKS_PER_ATB * BYTES_PER_BLOCK); #else gc_alloc_table_byte_len = total_byte_len / (1 + BITS_PER_BYTE / 2 * BYTES_PER_BLOCK); #endif gc_alloc_table_start = (byte*)start; #if MICROPY_ENABLE_FINALISER mp_uint_t gc_finaliser_table_byte_len = (gc_alloc_table_byte_len * BLOCKS_PER_ATB + BLOCKS_PER_FTB - 1) / BLOCKS_PER_FTB; gc_finaliser_table_start = gc_alloc_table_start + gc_alloc_table_byte_len; #endif mp_uint_t gc_pool_block_len = gc_alloc_table_byte_len * BLOCKS_PER_ATB; gc_pool_start = (mp_uint_t*)((byte*)end - gc_pool_block_len * BYTES_PER_BLOCK); gc_pool_end = (mp_uint_t*)end; #if MICROPY_ENABLE_FINALISER assert((byte*)gc_pool_start >= gc_finaliser_table_start + gc_finaliser_table_byte_len); #endif // clear ATBs memset(gc_alloc_table_start, 0, gc_alloc_table_byte_len); #if MICROPY_ENABLE_FINALISER // clear FTBs memset(gc_finaliser_table_start, 0, gc_finaliser_table_byte_len); #endif // allocate first block because gc_pool_start points there and it will never // be freed, so allocating 1 block with null pointers will minimise memory loss ATB_FREE_TO_HEAD(0); for (int i = 0; i < WORDS_PER_BLOCK; i++) { gc_pool_start[i] = 0; } // set last free ATB index to start of heap gc_last_free_atb_index = 0; // unlock the GC gc_lock_depth = 0; DEBUG_printf("GC layout:\n"); DEBUG_printf(" alloc table at %p, length " UINT_FMT " bytes, " UINT_FMT " blocks\n", gc_alloc_table_start, gc_alloc_table_byte_len, gc_alloc_table_byte_len * BLOCKS_PER_ATB); #if MICROPY_ENABLE_FINALISER DEBUG_printf(" finaliser table at %p, length " UINT_FMT " bytes, " UINT_FMT " blocks\n", gc_finaliser_table_start, gc_finaliser_table_byte_len, gc_finaliser_table_byte_len * BLOCKS_PER_FTB); #endif DEBUG_printf(" pool at %p, length " UINT_FMT " bytes, " UINT_FMT " blocks\n", gc_pool_start, gc_pool_block_len * BYTES_PER_BLOCK, gc_pool_block_len); } void gc_lock(void) { gc_lock_depth++; } void gc_unlock(void) { gc_lock_depth--; } bool gc_is_locked(void) { return gc_lock_depth != 0; } #define VERIFY_PTR(ptr) ( \ (ptr & (BYTES_PER_BLOCK - 1)) == 0 /* must be aligned on a block */ \ && ptr >= (mp_uint_t)gc_pool_start /* must be above start of pool */ \ && ptr < (mp_uint_t)gc_pool_end /* must be below end of pool */ \ ) #define VERIFY_MARK_AND_PUSH(ptr) \ do { \ if (VERIFY_PTR(ptr)) { \ mp_uint_t _block = BLOCK_FROM_PTR(ptr); \ if (ATB_GET_KIND(_block) == AT_HEAD) { \ /* an unmarked head, mark it, and push it on gc stack */ \ ATB_HEAD_TO_MARK(_block); \ if (gc_sp < &gc_stack[STACK_SIZE]) { \ *gc_sp++ = _block; \ } else { \ gc_stack_overflow = 1; \ } \ } \ } \ } while (0) STATIC void gc_drain_stack(void) { while (gc_sp > gc_stack) { // pop the next block off the stack mp_uint_t block = *--gc_sp; // work out number of consecutive blocks in the chain starting with this one mp_uint_t n_blocks = 0; do { n_blocks += 1; } while (ATB_GET_KIND(block + n_blocks) == AT_TAIL); // check this block's children mp_uint_t *scan = (mp_uint_t*)PTR_FROM_BLOCK(block); for (mp_uint_t i = n_blocks * WORDS_PER_BLOCK; i > 0; i--, scan++) { mp_uint_t ptr2 = *scan; VERIFY_MARK_AND_PUSH(ptr2); } } } STATIC void gc_deal_with_stack_overflow(void) { while (gc_stack_overflow) { gc_stack_overflow = 0; gc_sp = gc_stack; // scan entire memory looking for blocks which have been marked but not their children for (mp_uint_t block = 0; block < gc_alloc_table_byte_len * BLOCKS_PER_ATB; block++) { // trace (again) if mark bit set if (ATB_GET_KIND(block) == AT_MARK) { *gc_sp++ = block; gc_drain_stack(); } } } } #if MICROPY_PY_GC_COLLECT_RETVAL uint gc_collected; #endif STATIC void gc_sweep(void) { #if MICROPY_PY_GC_COLLECT_RETVAL gc_collected = 0; #endif // free unmarked heads and their tails int free_tail = 0; for (mp_uint_t block = 0; block < gc_alloc_table_byte_len * BLOCKS_PER_ATB; block++) { switch (ATB_GET_KIND(block)) { case AT_HEAD: #if MICROPY_ENABLE_FINALISER if (FTB_GET(block)) { mp_obj_t obj = (mp_obj_t)PTR_FROM_BLOCK(block); if (((mp_obj_base_t*)obj)->type != MP_OBJ_NULL) { // if the object has a type then see if it has a __del__ method mp_obj_t dest[2]; mp_load_method_maybe(obj, MP_QSTR___del__, dest); if (dest[0] != MP_OBJ_NULL) { // load_method returned a method mp_call_method_n_kw(0, 0, dest); } } // clear finaliser flag FTB_CLEAR(block); } #endif free_tail = 1; #if MICROPY_PY_GC_COLLECT_RETVAL gc_collected++; #endif // fall through to free the head case AT_TAIL: if (free_tail) { DEBUG_printf("gc_sweep(%p)\n",PTR_FROM_BLOCK(block)); ATB_ANY_TO_FREE(block); } break; case AT_MARK: ATB_MARK_TO_HEAD(block); free_tail = 0; break; } } } void gc_collect_start(void) { gc_lock(); gc_stack_overflow = 0; gc_sp = gc_stack; } void gc_collect_root(void **ptrs, mp_uint_t len) { for (mp_uint_t i = 0; i < len; i++) { mp_uint_t ptr = (mp_uint_t)ptrs[i]; VERIFY_MARK_AND_PUSH(ptr); gc_drain_stack(); } } void gc_collect_end(void) { gc_deal_with_stack_overflow(); gc_sweep(); gc_last_free_atb_index = 0; gc_unlock(); } void gc_info(gc_info_t *info) { info->total = (gc_pool_end - gc_pool_start) * sizeof(mp_uint_t); info->used = 0; info->free = 0; info->num_1block = 0; info->num_2block = 0; info->max_block = 0; for (mp_uint_t block = 0, len = 0; block < gc_alloc_table_byte_len * BLOCKS_PER_ATB; block++) { mp_uint_t kind = ATB_GET_KIND(block); if (kind == AT_FREE || kind == AT_HEAD) { if (len == 1) { info->num_1block += 1; } else if (len == 2) { info->num_2block += 1; } if (len > info->max_block) { info->max_block = len; } } switch (kind) { case AT_FREE: info->free += 1; len = 0; break; case AT_HEAD: info->used += 1; len = 1; break; case AT_TAIL: info->used += 1; len += 1; break; case AT_MARK: // shouldn't happen break; } } info->used *= BYTES_PER_BLOCK; info->free *= BYTES_PER_BLOCK; } void *gc_alloc(mp_uint_t n_bytes, bool has_finaliser) { mp_uint_t n_blocks = ((n_bytes + BYTES_PER_BLOCK - 1) & (~(BYTES_PER_BLOCK - 1))) / BYTES_PER_BLOCK; DEBUG_printf("gc_alloc(" UINT_FMT " bytes -> " UINT_FMT " blocks)\n", n_bytes, n_blocks); // check if GC is locked if (gc_lock_depth > 0) { return NULL; } // check for 0 allocation if (n_blocks == 0) { return NULL; } mp_uint_t i; mp_uint_t end_block; mp_uint_t start_block; mp_uint_t n_free = 0; int collected = 0; for (;;) { // look for a run of n_blocks available blocks for (i = gc_last_free_atb_index; i < gc_alloc_table_byte_len; i++) { byte a = gc_alloc_table_start[i]; if (ATB_0_IS_FREE(a)) { if (++n_free >= n_blocks) { i = i * BLOCKS_PER_ATB + 0; goto found; } } else { n_free = 0; } if (ATB_1_IS_FREE(a)) { if (++n_free >= n_blocks) { i = i * BLOCKS_PER_ATB + 1; goto found; } } else { n_free = 0; } if (ATB_2_IS_FREE(a)) { if (++n_free >= n_blocks) { i = i * BLOCKS_PER_ATB + 2; goto found; } } else { n_free = 0; } if (ATB_3_IS_FREE(a)) { if (++n_free >= n_blocks) { i = i * BLOCKS_PER_ATB + 3; goto found; } } else { n_free = 0; } } // nothing found! if (collected) { return NULL; } DEBUG_printf("gc_alloc(" UINT_FMT "): no free mem, triggering GC\n", n_bytes); gc_collect(); collected = 1; } // found, ending at block i inclusive found: // get starting and end blocks, both inclusive end_block = i; start_block = i - n_free + 1; // Set last free ATB index to block after last block we found, for start of // next scan. To reduce fragmentation, we only do this if we were looking // for a single free block, which guarantees that there are no free blocks // before this one. Also, whenever we free or shink a block we must check // if this index needs adjusting (see gc_realloc and gc_free). if (n_free == 1) { gc_last_free_atb_index = (i + 1) / BLOCKS_PER_ATB; } // mark first block as used head ATB_FREE_TO_HEAD(start_block); // mark rest of blocks as used tail // TODO for a run of many blocks can make this more efficient for (mp_uint_t bl = start_block + 1; bl <= end_block; bl++) { ATB_FREE_TO_TAIL(bl); } // get pointer to first block void *ret_ptr = (void*)(gc_pool_start + start_block * WORDS_PER_BLOCK); DEBUG_printf("gc_alloc(%p)\n", ret_ptr); // zero out the additional bytes of the newly allocated blocks // This is needed because the blocks may have previously held pointers // to the heap and will not be set to something else if the caller // doesn't actually use the entire block. As such they will continue // to point to the heap and may prevent other blocks from being reclaimed. memset((byte*)ret_ptr + n_bytes, 0, (end_block - start_block + 1) * BYTES_PER_BLOCK - n_bytes); #if MICROPY_ENABLE_FINALISER if (has_finaliser) { // clear type pointer in case it is never set ((mp_obj_base_t*)ret_ptr)->type = MP_OBJ_NULL; // set mp_obj flag only if it has a finaliser FTB_SET(start_block); } #endif #if EXTENSIVE_HEAP_PROFILING gc_dump_alloc_table(); #endif return ret_ptr; } /* void *gc_alloc(mp_uint_t n_bytes) { return _gc_alloc(n_bytes, false); } void *gc_alloc_with_finaliser(mp_uint_t n_bytes) { return _gc_alloc(n_bytes, true); } */ // force the freeing of a piece of memory void gc_free(void *ptr_in) { if (gc_lock_depth > 0) { // TODO how to deal with this error? return; } mp_uint_t ptr = (mp_uint_t)ptr_in; DEBUG_printf("gc_free(%p)\n", ptr); if (VERIFY_PTR(ptr)) { mp_uint_t block = BLOCK_FROM_PTR(ptr); if (ATB_GET_KIND(block) == AT_HEAD) { // set the last_free pointer to this block if it's earlier in the heap if (block / BLOCKS_PER_ATB < gc_last_free_atb_index) { gc_last_free_atb_index = block / BLOCKS_PER_ATB; } // free head and all of its tail blocks do { ATB_ANY_TO_FREE(block); block += 1; } while (ATB_GET_KIND(block) == AT_TAIL); #if EXTENSIVE_HEAP_PROFILING gc_dump_alloc_table(); #endif } } } mp_uint_t gc_nbytes(void *ptr_in) { mp_uint_t ptr = (mp_uint_t)ptr_in; if (VERIFY_PTR(ptr)) { mp_uint_t block = BLOCK_FROM_PTR(ptr); if (ATB_GET_KIND(block) == AT_HEAD) { // work out number of consecutive blocks in the chain starting with this on mp_uint_t n_blocks = 0; do { n_blocks += 1; } while (ATB_GET_KIND(block + n_blocks) == AT_TAIL); return n_blocks * BYTES_PER_BLOCK; } } // invalid pointer return 0; } #if 0 // old, simple realloc that didn't expand memory in place void *gc_realloc(void *ptr, mp_uint_t n_bytes) { mp_uint_t n_existing = gc_nbytes(ptr); if (n_bytes <= n_existing) { return ptr; } else { bool has_finaliser; if (ptr == NULL) { has_finaliser = false; } else { #if MICROPY_ENABLE_FINALISER has_finaliser = FTB_GET(BLOCK_FROM_PTR((mp_uint_t)ptr)); #else has_finaliser = false; #endif } void *ptr2 = gc_alloc(n_bytes, has_finaliser); if (ptr2 == NULL) { return ptr2; } memcpy(ptr2, ptr, n_existing); gc_free(ptr); return ptr2; } } #else // Alternative gc_realloc impl void *gc_realloc(void *ptr_in, mp_uint_t n_bytes) { if (gc_lock_depth > 0) { return NULL; } // check for pure allocation if (ptr_in == NULL) { return gc_alloc(n_bytes, false); } mp_uint_t ptr = (mp_uint_t)ptr_in; // sanity check the ptr if (!VERIFY_PTR(ptr)) { return NULL; } // get first block mp_uint_t block = BLOCK_FROM_PTR(ptr); // sanity check the ptr is pointing to the head of a block if (ATB_GET_KIND(block) != AT_HEAD) { return NULL; } // compute number of new blocks that are requested mp_uint_t new_blocks = (n_bytes + BYTES_PER_BLOCK - 1) / BYTES_PER_BLOCK; // Get the total number of consecutive blocks that are already allocated to // this chunk of memory, and then count the number of free blocks following // it. Stop if we reach the end of the heap, or if we find enough extra // free blocks to satisfy the realloc. Note that we need to compute the // total size of the existing memory chunk so we can correctly and // efficiently shrink it (see below for shrinking code). mp_uint_t n_free = 0; mp_uint_t n_blocks = 1; // counting HEAD block mp_uint_t max_block = gc_alloc_table_byte_len * BLOCKS_PER_ATB; for (mp_uint_t bl = block + n_blocks; bl < max_block; bl++) { byte block_type = ATB_GET_KIND(bl); if (block_type == AT_TAIL) { n_blocks++; continue; } if (block_type == AT_FREE) { n_free++; if (n_blocks + n_free >= new_blocks) { // stop as soon as we find enough blocks for n_bytes break; } continue; } break; } // return original ptr if it already has the requested number of blocks if (new_blocks == n_blocks) { return ptr_in; } // check if we can shrink the allocated area if (new_blocks < n_blocks) { // free unneeded tail blocks for (mp_uint_t bl = block + new_blocks, count = n_blocks - new_blocks; count > 0; bl++, count--) { ATB_ANY_TO_FREE(bl); } // set the last_free pointer to end of this block if it's earlier in the heap if ((block + new_blocks) / BLOCKS_PER_ATB < gc_last_free_atb_index) { gc_last_free_atb_index = (block + new_blocks) / BLOCKS_PER_ATB; } #if EXTENSIVE_HEAP_PROFILING gc_dump_alloc_table(); #endif return ptr_in; } // check if we can expand in place if (new_blocks <= n_blocks + n_free) { // mark few more blocks as used tail for (mp_uint_t bl = block + n_blocks; bl < block + new_blocks; bl++) { assert(ATB_GET_KIND(bl) == AT_FREE); ATB_FREE_TO_TAIL(bl); } // zero out the additional bytes of the newly allocated blocks (see comment above in gc_alloc) memset((byte*)ptr_in + n_bytes, 0, new_blocks * BYTES_PER_BLOCK - n_bytes); #if EXTENSIVE_HEAP_PROFILING gc_dump_alloc_table(); #endif return ptr_in; } // can't resize inplace; try to find a new contiguous chain void *ptr_out = gc_alloc(n_bytes, #if MICROPY_ENABLE_FINALISER FTB_GET(block) #else false #endif ); // check that the alloc succeeded if (ptr_out == NULL) { return NULL; } DEBUG_printf("gc_realloc(%p -> %p)\n", ptr_in, ptr_out); memcpy(ptr_out, ptr_in, n_blocks * BYTES_PER_BLOCK); gc_free(ptr_in); return ptr_out; } #endif // Alternative gc_realloc impl void gc_dump_info() { gc_info_t info; gc_info(&info); printf("GC: total: " UINT_FMT ", used: " UINT_FMT ", free: " UINT_FMT "\n", info.total, info.used, info.free); printf(" No. of 1-blocks: " UINT_FMT ", 2-blocks: " UINT_FMT ", max blk sz: " UINT_FMT "\n", info.num_1block, info.num_2block, info.max_block); } void gc_dump_alloc_table(void) { static const mp_uint_t DUMP_BYTES_PER_LINE = 64; #if !EXTENSIVE_HEAP_PROFILING // When comparing heap output we don't want to print the starting // pointer of the heap because it changes from run to run. printf("GC memory layout; from %p:", gc_pool_start); #endif for (mp_uint_t bl = 0; bl < gc_alloc_table_byte_len * BLOCKS_PER_ATB; bl++) { if (bl % DUMP_BYTES_PER_LINE == 0) { // a new line of blocks #if EXTENSIVE_HEAP_PROFILING { // check if this line contains only free blocks bool only_free_blocks = true; for (mp_uint_t bl2 = bl; bl2 < gc_alloc_table_byte_len * BLOCKS_PER_ATB && bl2 < bl + DUMP_BYTES_PER_LINE; bl2++) { if (ATB_GET_KIND(bl2) != AT_FREE) { only_free_blocks = false; break; } } if (only_free_blocks) { // line contains only free blocks, so skip printing it bl += DUMP_BYTES_PER_LINE - 1; continue; } } #endif // print header for new line of blocks printf("\n%04x: ", (uint)bl); } int c = ' '; switch (ATB_GET_KIND(bl)) { case AT_FREE: c = '.'; break; case AT_HEAD: c = 'h'; break; /* this prints the uPy object type of the head block case AT_HEAD: { mp_uint_t *ptr = gc_pool_start + bl * WORDS_PER_BLOCK; if (*ptr == (mp_uint_t)&mp_type_tuple) { c = 'T'; } else if (*ptr == (mp_uint_t)&mp_type_list) { c = 'L'; } else if (*ptr == (mp_uint_t)&mp_type_dict) { c = 'D'; } else if (*ptr == (mp_uint_t)&mp_type_float) { c = 'F'; } else if (*ptr == (mp_uint_t)&mp_type_fun_bc) { c = 'B'; } else { c = 'h'; } break; } */ case AT_TAIL: c = 't'; break; case AT_MARK: c = 'm'; break; } printf("%c", c); } printf("\n"); } #if DEBUG_PRINT void gc_test(void) { mp_uint_t len = 500; mp_uint_t *heap = malloc(len); gc_init(heap, heap + len / sizeof(mp_uint_t)); void *ptrs[100]; { mp_uint_t **p = gc_alloc(16, false); p[0] = gc_alloc(64, false); p[1] = gc_alloc(1, false); p[2] = gc_alloc(1, false); p[3] = gc_alloc(1, false); mp_uint_t ***p2 = gc_alloc(16, false); p2[0] = p; p2[1] = p; ptrs[0] = p2; } for (int i = 0; i < 25; i+=2) { mp_uint_t *p = gc_alloc(i, false); printf("p=%p\n", p); if (i & 3) { //ptrs[i] = p; } } printf("Before GC:\n"); gc_dump_alloc_table(); printf("Starting GC...\n"); gc_collect_start(); gc_collect_root(ptrs, sizeof(ptrs) / sizeof(void*)); gc_collect_end(); printf("After GC:\n"); gc_dump_alloc_table(); } #endif #endif // MICROPY_ENABLE_GC