/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2013, 2014 Damien P. George * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include #include "py/runtime.h" #include "py/mphal.h" #include "extmod/machine_spi.h" #include "irq.h" #include "pin.h" #include "bufhelper.h" #include "spi.h" /// \moduleref pyb /// \class SPI - a master-driven serial protocol /// /// SPI is a serial protocol that is driven by a master. At the physical level /// there are 3 lines: SCK, MOSI, MISO. /// /// See usage model of I2C; SPI is very similar. Main difference is /// parameters to init the SPI bus: /// /// from pyb import SPI /// spi = SPI(1, SPI.MASTER, baudrate=600000, polarity=1, phase=0, crc=0x7) /// /// Only required parameter is mode, SPI.MASTER or SPI.SLAVE. Polarity can be /// 0 or 1, and is the level the idle clock line sits at. Phase can be 0 or 1 /// to sample data on the first or second clock edge respectively. Crc can be /// None for no CRC, or a polynomial specifier. /// /// Additional method for SPI: /// /// data = spi.send_recv(b'1234') # send 4 bytes and receive 4 bytes /// buf = bytearray(4) /// spi.send_recv(b'1234', buf) # send 4 bytes and receive 4 into buf /// spi.send_recv(buf, buf) # send/recv 4 bytes from/to buf // Possible DMA configurations for SPI busses: // SPI1_TX: DMA2_Stream3.CHANNEL_3 or DMA2_Stream5.CHANNEL_3 // SPI1_RX: DMA2_Stream0.CHANNEL_3 or DMA2_Stream2.CHANNEL_3 // SPI2_TX: DMA1_Stream4.CHANNEL_0 // SPI2_RX: DMA1_Stream3.CHANNEL_0 // SPI3_TX: DMA1_Stream5.CHANNEL_0 or DMA1_Stream7.CHANNEL_0 // SPI3_RX: DMA1_Stream0.CHANNEL_0 or DMA1_Stream2.CHANNEL_0 // SPI4_TX: DMA2_Stream4.CHANNEL_5 or DMA2_Stream1.CHANNEL_4 // SPI4_RX: DMA2_Stream3.CHANNEL_5 or DMA2_Stream0.CHANNEL_4 // SPI5_TX: DMA2_Stream4.CHANNEL_2 or DMA2_Stream6.CHANNEL_7 // SPI5_RX: DMA2_Stream3.CHANNEL_2 or DMA2_Stream5.CHANNEL_7 // SPI6_TX: DMA2_Stream5.CHANNEL_1 // SPI6_RX: DMA2_Stream6.CHANNEL_1 #if defined(MICROPY_HW_SPI1_SCK) SPI_HandleTypeDef SPIHandle1 = {.Instance = NULL}; #endif #if defined(MICROPY_HW_SPI2_SCK) SPI_HandleTypeDef SPIHandle2 = {.Instance = NULL}; #endif #if defined(MICROPY_HW_SPI3_SCK) SPI_HandleTypeDef SPIHandle3 = {.Instance = NULL}; #endif #if defined(MICROPY_HW_SPI4_SCK) SPI_HandleTypeDef SPIHandle4 = {.Instance = NULL}; #endif #if defined(MICROPY_HW_SPI5_SCK) SPI_HandleTypeDef SPIHandle5 = {.Instance = NULL}; #endif #if defined(MICROPY_HW_SPI6_SCK) SPI_HandleTypeDef SPIHandle6 = {.Instance = NULL}; #endif const spi_t spi_obj[6] = { #if defined(MICROPY_HW_SPI1_SCK) {&SPIHandle1, &dma_SPI_1_TX, &dma_SPI_1_RX}, #else {NULL, NULL, NULL}, #endif #if defined(MICROPY_HW_SPI2_SCK) {&SPIHandle2, &dma_SPI_2_TX, &dma_SPI_2_RX}, #else {NULL, NULL, NULL}, #endif #if defined(MICROPY_HW_SPI3_SCK) {&SPIHandle3, &dma_SPI_3_TX, &dma_SPI_3_RX}, #else {NULL, NULL, NULL}, #endif #if defined(MICROPY_HW_SPI4_SCK) {&SPIHandle4, &dma_SPI_4_TX, &dma_SPI_4_RX}, #else {NULL, NULL, NULL}, #endif #if defined(MICROPY_HW_SPI5_SCK) {&SPIHandle5, &dma_SPI_5_TX, &dma_SPI_5_RX}, #else {NULL, NULL, NULL}, #endif #if defined(MICROPY_HW_SPI6_SCK) {&SPIHandle6, &dma_SPI_6_TX, &dma_SPI_6_RX}, #else {NULL, NULL, NULL}, #endif }; void spi_init0(void) { // Initialise the SPI handles. // The structs live on the BSS so all other fields will be zero after a reset. #if defined(MICROPY_HW_SPI1_SCK) SPIHandle1.Instance = SPI1; #endif #if defined(MICROPY_HW_SPI2_SCK) SPIHandle2.Instance = SPI2; #endif #if defined(MICROPY_HW_SPI3_SCK) SPIHandle3.Instance = SPI3; #endif #if defined(MICROPY_HW_SPI4_SCK) SPIHandle4.Instance = SPI4; #endif #if defined(MICROPY_HW_SPI5_SCK) SPIHandle5.Instance = SPI5; #endif #if defined(MICROPY_HW_SPI6_SCK) SPIHandle6.Instance = SPI6; #endif } STATIC int spi_find(mp_obj_t id) { if (MP_OBJ_IS_STR(id)) { // given a string id const char *port = mp_obj_str_get_str(id); if (0) { #ifdef MICROPY_HW_SPI1_NAME } else if (strcmp(port, MICROPY_HW_SPI1_NAME) == 0) { return 1; #endif #ifdef MICROPY_HW_SPI2_NAME } else if (strcmp(port, MICROPY_HW_SPI2_NAME) == 0) { return 2; #endif #ifdef MICROPY_HW_SPI3_NAME } else if (strcmp(port, MICROPY_HW_SPI3_NAME) == 0) { return 3; #endif #ifdef MICROPY_HW_SPI4_NAME } else if (strcmp(port, MICROPY_HW_SPI4_NAME) == 0) { return 4; #endif #ifdef MICROPY_HW_SPI5_NAME } else if (strcmp(port, MICROPY_HW_SPI5_NAME) == 0) { return 5; #endif #ifdef MICROPY_HW_SPI6_NAME } else if (strcmp(port, MICROPY_HW_SPI6_NAME) == 0) { return 6; #endif } nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "SPI(%s) doesn't exist", port)); } else { // given an integer id int spi_id = mp_obj_get_int(id); if (spi_id >= 1 && spi_id <= MP_ARRAY_SIZE(spi_obj) && spi_obj[spi_id - 1].spi != NULL) { return spi_id; } nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "SPI(%d) doesn't exist", spi_id)); } } // sets the parameters in the SPI_InitTypeDef struct // if an argument is -1 then the corresponding parameter is not changed STATIC void spi_set_params(const spi_t *spi_obj, uint32_t prescale, int32_t baudrate, int32_t polarity, int32_t phase, int32_t bits, int32_t firstbit) { SPI_HandleTypeDef *spi = spi_obj->spi; SPI_InitTypeDef *init = &spi->Init; if (prescale != 0xffffffff || baudrate != -1) { if (prescale == 0xffffffff) { // prescaler not given, so select one that yields at most the requested baudrate mp_uint_t spi_clock; #if defined(STM32F0) spi_clock = HAL_RCC_GetPCLK1Freq(); #else if (spi->Instance == SPI2 || spi->Instance == SPI3) { // SPI2 and SPI3 are on APB1 spi_clock = HAL_RCC_GetPCLK1Freq(); } else { // SPI1, SPI4, SPI5 and SPI6 are on APB2 spi_clock = HAL_RCC_GetPCLK2Freq(); } #endif prescale = (spi_clock + baudrate - 1) / baudrate; } if (prescale <= 2) { init->BaudRatePrescaler = SPI_BAUDRATEPRESCALER_2; } else if (prescale <= 4) { init->BaudRatePrescaler = SPI_BAUDRATEPRESCALER_4; } else if (prescale <= 8) { init->BaudRatePrescaler = SPI_BAUDRATEPRESCALER_8; } else if (prescale <= 16) { init->BaudRatePrescaler = SPI_BAUDRATEPRESCALER_16; } else if (prescale <= 32) { init->BaudRatePrescaler = SPI_BAUDRATEPRESCALER_32; } else if (prescale <= 64) { init->BaudRatePrescaler = SPI_BAUDRATEPRESCALER_64; } else if (prescale <= 128) { init->BaudRatePrescaler = SPI_BAUDRATEPRESCALER_128; } else { init->BaudRatePrescaler = SPI_BAUDRATEPRESCALER_256; } } if (polarity != -1) { init->CLKPolarity = polarity == 0 ? SPI_POLARITY_LOW : SPI_POLARITY_HIGH; } if (phase != -1) { init->CLKPhase = phase == 0 ? SPI_PHASE_1EDGE : SPI_PHASE_2EDGE; } if (bits != -1) { init->DataSize = (bits == 16) ? SPI_DATASIZE_16BIT : SPI_DATASIZE_8BIT; } if (firstbit != -1) { init->FirstBit = firstbit; } } // TODO allow to take a list of pins to use void spi_init(const spi_t *self, bool enable_nss_pin) { SPI_HandleTypeDef *spi = self->spi; const pin_obj_t *pins[4] = { NULL, NULL, NULL, NULL }; if (0) { #if defined(MICROPY_HW_SPI1_SCK) } else if (spi->Instance == SPI1) { #if defined(MICROPY_HW_SPI1_NSS) pins[0] = MICROPY_HW_SPI1_NSS; #endif pins[1] = MICROPY_HW_SPI1_SCK; #if defined(MICROPY_HW_SPI1_MISO) pins[2] = MICROPY_HW_SPI1_MISO; #endif pins[3] = MICROPY_HW_SPI1_MOSI; // enable the SPI clock __HAL_RCC_SPI1_CLK_ENABLE(); #endif #if defined(MICROPY_HW_SPI2_SCK) } else if (spi->Instance == SPI2) { #if defined(MICROPY_HW_SPI2_NSS) pins[0] = MICROPY_HW_SPI2_NSS; #endif pins[1] = MICROPY_HW_SPI2_SCK; #if defined(MICROPY_HW_SPI2_MISO) pins[2] = MICROPY_HW_SPI2_MISO; #endif pins[3] = MICROPY_HW_SPI2_MOSI; // enable the SPI clock __HAL_RCC_SPI2_CLK_ENABLE(); #endif #if defined(MICROPY_HW_SPI3_SCK) } else if (spi->Instance == SPI3) { #if defined(MICROPY_HW_SPI3_NSS) pins[0] = MICROPY_HW_SPI3_NSS; #endif pins[1] = MICROPY_HW_SPI3_SCK; #if defined(MICROPY_HW_SPI3_MISO) pins[2] = MICROPY_HW_SPI3_MISO; #endif pins[3] = MICROPY_HW_SPI3_MOSI; // enable the SPI clock __HAL_RCC_SPI3_CLK_ENABLE(); #endif #if defined(MICROPY_HW_SPI4_SCK) } else if (spi->Instance == SPI4) { #if defined(MICROPY_HW_SPI4_NSS) pins[0] = MICROPY_HW_SPI4_NSS; #endif pins[1] = MICROPY_HW_SPI4_SCK; #if defined(MICROPY_HW_SPI4_MISO) pins[2] = MICROPY_HW_SPI4_MISO; #endif pins[3] = MICROPY_HW_SPI4_MOSI; // enable the SPI clock __HAL_RCC_SPI4_CLK_ENABLE(); #endif #if defined(MICROPY_HW_SPI5_SCK) } else if (spi->Instance == SPI5) { #if defined(MICROPY_HW_SPI5_NSS) pins[0] = MICROPY_HW_SPI5_NSS; #endif pins[1] = MICROPY_HW_SPI5_SCK; #if defined(MICROPY_HW_SPI5_MISO) pins[2] = MICROPY_HW_SPI5_MISO; #endif pins[3] = MICROPY_HW_SPI5_MOSI; // enable the SPI clock __HAL_RCC_SPI5_CLK_ENABLE(); #endif #if defined(MICROPY_HW_SPI6_SCK) } else if (spi->Instance == SPI6) { #if defined(MICROPY_HW_SPI6_NSS) pins[0] = MICROPY_HW_SPI6_NSS; #endif pins[1] = MICROPY_HW_SPI6_SCK; #if defined(MICROPY_HW_SPI6_MISO) pins[2] = MICROPY_HW_SPI6_MISO; #endif pins[3] = MICROPY_HW_SPI6_MOSI; // enable the SPI clock __HAL_RCC_SPI6_CLK_ENABLE(); #endif } else { // SPI does not exist for this board (shouldn't get here, should be checked by caller) return; } // init the GPIO lines uint32_t mode = MP_HAL_PIN_MODE_ALT; uint32_t pull = spi->Init.CLKPolarity == SPI_POLARITY_LOW ? MP_HAL_PIN_PULL_DOWN : MP_HAL_PIN_PULL_UP; for (uint i = (enable_nss_pin ? 0 : 1); i < 4; i++) { if (pins[i] == NULL) { continue; } mp_hal_pin_config_alt(pins[i], mode, pull, AF_FN_SPI, (self - &spi_obj[0]) + 1); } // init the SPI device if (HAL_SPI_Init(spi) != HAL_OK) { // init error // TODO should raise an exception, but this function is not necessarily going to be // called via Python, so may not be properly wrapped in an NLR handler printf("OSError: HAL_SPI_Init failed\n"); return; } // After calling HAL_SPI_Init() it seems that the DMA gets disconnected if // it was previously configured. So we invalidate the DMA channel to force // an initialisation the next time we use it. dma_invalidate_channel(self->tx_dma_descr); dma_invalidate_channel(self->rx_dma_descr); } void spi_deinit(const spi_t *spi_obj) { SPI_HandleTypeDef *spi = spi_obj->spi; HAL_SPI_DeInit(spi); if (0) { #if defined(MICROPY_HW_SPI1_SCK) } else if (spi->Instance == SPI1) { __HAL_RCC_SPI1_FORCE_RESET(); __HAL_RCC_SPI1_RELEASE_RESET(); __HAL_RCC_SPI1_CLK_DISABLE(); #endif #if defined(MICROPY_HW_SPI2_SCK) } else if (spi->Instance == SPI2) { __HAL_RCC_SPI2_FORCE_RESET(); __HAL_RCC_SPI2_RELEASE_RESET(); __HAL_RCC_SPI2_CLK_DISABLE(); #endif #if defined(MICROPY_HW_SPI3_SCK) } else if (spi->Instance == SPI3) { __HAL_RCC_SPI3_FORCE_RESET(); __HAL_RCC_SPI3_RELEASE_RESET(); __HAL_RCC_SPI3_CLK_DISABLE(); #endif #if defined(MICROPY_HW_SPI4_SCK) } else if (spi->Instance == SPI4) { __HAL_RCC_SPI4_FORCE_RESET(); __HAL_RCC_SPI4_RELEASE_RESET(); __HAL_RCC_SPI4_CLK_DISABLE(); #endif #if defined(MICROPY_HW_SPI5_SCK) } else if (spi->Instance == SPI5) { __HAL_RCC_SPI5_FORCE_RESET(); __HAL_RCC_SPI5_RELEASE_RESET(); __HAL_RCC_SPI5_CLK_DISABLE(); #endif #if defined(MICROPY_HW_SPI6_SCK) } else if (spi->Instance == SPI6) { __HAL_RCC_SPI6_FORCE_RESET(); __HAL_RCC_SPI6_RELEASE_RESET(); __HAL_RCC_SPI6_CLK_DISABLE(); #endif } } STATIC HAL_StatusTypeDef spi_wait_dma_finished(const spi_t *spi, uint32_t t_start, uint32_t timeout) { volatile HAL_SPI_StateTypeDef *state = &spi->spi->State; for (;;) { // Do an atomic check of the state; WFI will exit even if IRQs are disabled uint32_t irq_state = disable_irq(); if (*state == HAL_SPI_STATE_READY) { enable_irq(irq_state); return HAL_OK; } __WFI(); enable_irq(irq_state); if (HAL_GetTick() - t_start >= timeout) { return HAL_TIMEOUT; } } return HAL_OK; } // A transfer of "len" bytes should take len*8*1000/baudrate milliseconds. // To simplify the calculation we assume the baudrate is never less than 8kHz // and use that value for the baudrate in the formula, plus a small constant. #define SPI_TRANSFER_TIMEOUT(len) ((len) + 100) STATIC void spi_transfer(const spi_t *self, size_t len, const uint8_t *src, uint8_t *dest, uint32_t timeout) { // Note: there seems to be a problem sending 1 byte using DMA the first // time directly after the SPI/DMA is initialised. The cause of this is // unknown but we sidestep the issue by using polling for 1 byte transfer. // Note: DMA transfers are limited to 65535 bytes at a time. HAL_StatusTypeDef status; if (dest == NULL) { // send only if (len == 1 || query_irq() == IRQ_STATE_DISABLED) { status = HAL_SPI_Transmit(self->spi, (uint8_t*)src, len, timeout); } else { DMA_HandleTypeDef tx_dma; dma_init(&tx_dma, self->tx_dma_descr, self->spi); self->spi->hdmatx = &tx_dma; self->spi->hdmarx = NULL; MP_HAL_CLEAN_DCACHE(src, len); uint32_t t_start = HAL_GetTick(); do { uint32_t l = MIN(len, 65535); status = HAL_SPI_Transmit_DMA(self->spi, (uint8_t*)src, l); if (status != HAL_OK) { break; } status = spi_wait_dma_finished(self, t_start, timeout); if (status != HAL_OK) { break; } len -= l; src += l; } while (len); dma_deinit(self->tx_dma_descr); } } else if (src == NULL) { // receive only if (len == 1 || query_irq() == IRQ_STATE_DISABLED) { status = HAL_SPI_Receive(self->spi, dest, len, timeout); } else { DMA_HandleTypeDef tx_dma, rx_dma; if (self->spi->Init.Mode == SPI_MODE_MASTER) { // in master mode the HAL actually does a TransmitReceive call dma_init(&tx_dma, self->tx_dma_descr, self->spi); self->spi->hdmatx = &tx_dma; } else { self->spi->hdmatx = NULL; } dma_init(&rx_dma, self->rx_dma_descr, self->spi); self->spi->hdmarx = &rx_dma; MP_HAL_CLEANINVALIDATE_DCACHE(dest, len); uint32_t t_start = HAL_GetTick(); do { uint32_t l = MIN(len, 65535); status = HAL_SPI_Receive_DMA(self->spi, dest, l); if (status != HAL_OK) { break; } status = spi_wait_dma_finished(self, t_start, timeout); if (status != HAL_OK) { break; } len -= l; dest += l; } while (len); if (self->spi->hdmatx != NULL) { dma_deinit(self->tx_dma_descr); } dma_deinit(self->rx_dma_descr); } } else { // send and receive if (len == 1 || query_irq() == IRQ_STATE_DISABLED) { status = HAL_SPI_TransmitReceive(self->spi, (uint8_t*)src, dest, len, timeout); } else { DMA_HandleTypeDef tx_dma, rx_dma; dma_init(&tx_dma, self->tx_dma_descr, self->spi); self->spi->hdmatx = &tx_dma; dma_init(&rx_dma, self->rx_dma_descr, self->spi); self->spi->hdmarx = &rx_dma; MP_HAL_CLEAN_DCACHE(src, len); MP_HAL_CLEANINVALIDATE_DCACHE(dest, len); uint32_t t_start = HAL_GetTick(); do { uint32_t l = MIN(len, 65535); status = HAL_SPI_TransmitReceive_DMA(self->spi, (uint8_t*)src, dest, l); if (status != HAL_OK) { break; } status = spi_wait_dma_finished(self, t_start, timeout); if (status != HAL_OK) { break; } len -= l; src += l; dest += l; } while (len); dma_deinit(self->tx_dma_descr); dma_deinit(self->rx_dma_descr); } } if (status != HAL_OK) { mp_hal_raise(status); } } STATIC void spi_print(const mp_print_t *print, const spi_t *spi_obj, bool legacy) { SPI_HandleTypeDef *spi = spi_obj->spi; uint spi_num = 1; // default to SPI1 if (spi->Instance == SPI2) { spi_num = 2; } #if defined(SPI3) else if (spi->Instance == SPI3) { spi_num = 3; } #endif #if defined(SPI4) else if (spi->Instance == SPI4) { spi_num = 4; } #endif #if defined(SPI5) else if (spi->Instance == SPI5) { spi_num = 5; } #endif #if defined(SPI6) else if (spi->Instance == SPI6) { spi_num = 6; } #endif mp_printf(print, "SPI(%u", spi_num); if (spi->State != HAL_SPI_STATE_RESET) { if (spi->Init.Mode == SPI_MODE_MASTER) { // compute baudrate uint spi_clock; #if defined(STM32F0) spi_clock = HAL_RCC_GetPCLK1Freq(); #else if (spi->Instance == SPI2 || spi->Instance == SPI3) { // SPI2 and SPI3 are on APB1 spi_clock = HAL_RCC_GetPCLK1Freq(); } else { // SPI1, SPI4, SPI5 and SPI6 are on APB2 spi_clock = HAL_RCC_GetPCLK2Freq(); } #endif uint log_prescaler = (spi->Init.BaudRatePrescaler >> 3) + 1; uint baudrate = spi_clock >> log_prescaler; if (legacy) { mp_printf(print, ", SPI.MASTER"); } mp_printf(print, ", baudrate=%u", baudrate); if (legacy) { mp_printf(print, ", prescaler=%u", 1 << log_prescaler); } } else { mp_printf(print, ", SPI.SLAVE"); } mp_printf(print, ", polarity=%u, phase=%u, bits=%u", spi->Init.CLKPolarity == SPI_POLARITY_LOW ? 0 : 1, spi->Init.CLKPhase == SPI_PHASE_1EDGE ? 0 : 1, spi->Init.DataSize == SPI_DATASIZE_8BIT ? 8 : 16); if (spi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE) { mp_printf(print, ", crc=0x%x", spi->Init.CRCPolynomial); } } mp_print_str(print, ")"); } /******************************************************************************/ /* MicroPython bindings for legacy pyb API */ typedef struct _pyb_spi_obj_t { mp_obj_base_t base; const spi_t *spi; } pyb_spi_obj_t; STATIC const pyb_spi_obj_t pyb_spi_obj[] = { {{&pyb_spi_type}, &spi_obj[0]}, {{&pyb_spi_type}, &spi_obj[1]}, {{&pyb_spi_type}, &spi_obj[2]}, {{&pyb_spi_type}, &spi_obj[3]}, {{&pyb_spi_type}, &spi_obj[4]}, {{&pyb_spi_type}, &spi_obj[5]}, }; STATIC void pyb_spi_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) { pyb_spi_obj_t *self = MP_OBJ_TO_PTR(self_in); spi_print(print, self->spi, true); } /// \method init(mode, baudrate=328125, *, polarity=1, phase=0, bits=8, firstbit=SPI.MSB, ti=False, crc=None) /// /// Initialise the SPI bus with the given parameters: /// /// - `mode` must be either `SPI.MASTER` or `SPI.SLAVE`. /// - `baudrate` is the SCK clock rate (only sensible for a master). STATIC mp_obj_t pyb_spi_init_helper(const pyb_spi_obj_t *self, size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { static const mp_arg_t allowed_args[] = { { MP_QSTR_mode, MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = 0} }, { MP_QSTR_baudrate, MP_ARG_INT, {.u_int = 328125} }, { MP_QSTR_prescaler, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0xffffffff} }, { MP_QSTR_polarity, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 1} }, { MP_QSTR_phase, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} }, { MP_QSTR_dir, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = SPI_DIRECTION_2LINES} }, { MP_QSTR_bits, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 8} }, { MP_QSTR_nss, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = SPI_NSS_SOFT} }, { MP_QSTR_firstbit, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = SPI_FIRSTBIT_MSB} }, { MP_QSTR_ti, MP_ARG_KW_ONLY | MP_ARG_BOOL, {.u_bool = false} }, { MP_QSTR_crc, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_PTR(&mp_const_none_obj)} }, }; // parse args mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); // set the SPI configuration values SPI_InitTypeDef *init = &self->spi->spi->Init; init->Mode = args[0].u_int; spi_set_params(self->spi, args[2].u_int, args[1].u_int, args[3].u_int, args[4].u_int, args[6].u_int, args[8].u_int); init->Direction = args[5].u_int; init->NSS = args[7].u_int; init->TIMode = args[9].u_bool ? SPI_TIMODE_ENABLE : SPI_TIMODE_DISABLE; if (args[10].u_obj == mp_const_none) { init->CRCCalculation = SPI_CRCCALCULATION_DISABLE; init->CRCPolynomial = 0; } else { init->CRCCalculation = SPI_CRCCALCULATION_ENABLE; init->CRCPolynomial = mp_obj_get_int(args[10].u_obj); } // init the SPI bus spi_init(self->spi, init->NSS != SPI_NSS_SOFT); return mp_const_none; } /// \classmethod \constructor(bus, ...) /// /// Construct an SPI object on the given bus. `bus` can be 1 or 2. /// With no additional parameters, the SPI object is created but not /// initialised (it has the settings from the last initialisation of /// the bus, if any). If extra arguments are given, the bus is initialised. /// See `init` for parameters of initialisation. /// /// The physical pins of the SPI busses are: /// /// - `SPI(1)` is on the X position: `(NSS, SCK, MISO, MOSI) = (X5, X6, X7, X8) = (PA4, PA5, PA6, PA7)` /// - `SPI(2)` is on the Y position: `(NSS, SCK, MISO, MOSI) = (Y5, Y6, Y7, Y8) = (PB12, PB13, PB14, PB15)` /// /// At the moment, the NSS pin is not used by the SPI driver and is free /// for other use. STATIC mp_obj_t pyb_spi_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) { // check arguments mp_arg_check_num(n_args, n_kw, 1, MP_OBJ_FUN_ARGS_MAX, true); // work out SPI bus int spi_id = spi_find(args[0]); // get SPI object const pyb_spi_obj_t *spi_obj = &pyb_spi_obj[spi_id - 1]; if (n_args > 1 || n_kw > 0) { // start the peripheral mp_map_t kw_args; mp_map_init_fixed_table(&kw_args, n_kw, args + n_args); pyb_spi_init_helper(spi_obj, n_args - 1, args + 1, &kw_args); } return MP_OBJ_FROM_PTR(spi_obj); } STATIC mp_obj_t pyb_spi_init(size_t n_args, const mp_obj_t *args, mp_map_t *kw_args) { return pyb_spi_init_helper(MP_OBJ_TO_PTR(args[0]), n_args - 1, args + 1, kw_args); } STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_spi_init_obj, 1, pyb_spi_init); /// \method deinit() /// Turn off the SPI bus. STATIC mp_obj_t pyb_spi_deinit(mp_obj_t self_in) { pyb_spi_obj_t *self = MP_OBJ_TO_PTR(self_in); spi_deinit(self->spi); return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_spi_deinit_obj, pyb_spi_deinit); /// \method send(send, *, timeout=5000) /// Send data on the bus: /// /// - `send` is the data to send (an integer to send, or a buffer object). /// - `timeout` is the timeout in milliseconds to wait for the send. /// /// Return value: `None`. STATIC mp_obj_t pyb_spi_send(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { // TODO assumes transmission size is 8-bits wide static const mp_arg_t allowed_args[] = { { MP_QSTR_send, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} }, { MP_QSTR_timeout, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 5000} }, }; // parse args pyb_spi_obj_t *self = MP_OBJ_TO_PTR(pos_args[0]); mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); // get the buffer to send from mp_buffer_info_t bufinfo; uint8_t data[1]; pyb_buf_get_for_send(args[0].u_obj, &bufinfo, data); // send the data spi_transfer(self->spi, bufinfo.len, bufinfo.buf, NULL, args[1].u_int); return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_spi_send_obj, 1, pyb_spi_send); /// \method recv(recv, *, timeout=5000) /// /// Receive data on the bus: /// /// - `recv` can be an integer, which is the number of bytes to receive, /// or a mutable buffer, which will be filled with received bytes. /// - `timeout` is the timeout in milliseconds to wait for the receive. /// /// Return value: if `recv` is an integer then a new buffer of the bytes received, /// otherwise the same buffer that was passed in to `recv`. STATIC mp_obj_t pyb_spi_recv(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { // TODO assumes transmission size is 8-bits wide static const mp_arg_t allowed_args[] = { { MP_QSTR_recv, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} }, { MP_QSTR_timeout, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 5000} }, }; // parse args pyb_spi_obj_t *self = MP_OBJ_TO_PTR(pos_args[0]); mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); // get the buffer to receive into vstr_t vstr; mp_obj_t o_ret = pyb_buf_get_for_recv(args[0].u_obj, &vstr); // receive the data spi_transfer(self->spi, vstr.len, NULL, (uint8_t*)vstr.buf, args[1].u_int); // return the received data if (o_ret != MP_OBJ_NULL) { return o_ret; } else { return mp_obj_new_str_from_vstr(&mp_type_bytes, &vstr); } } STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_spi_recv_obj, 1, pyb_spi_recv); /// \method send_recv(send, recv=None, *, timeout=5000) /// /// Send and receive data on the bus at the same time: /// /// - `send` is the data to send (an integer to send, or a buffer object). /// - `recv` is a mutable buffer which will be filled with received bytes. /// It can be the same as `send`, or omitted. If omitted, a new buffer will /// be created. /// - `timeout` is the timeout in milliseconds to wait for the receive. /// /// Return value: the buffer with the received bytes. STATIC mp_obj_t pyb_spi_send_recv(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { // TODO assumes transmission size is 8-bits wide static const mp_arg_t allowed_args[] = { { MP_QSTR_send, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} }, { MP_QSTR_recv, MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} }, { MP_QSTR_timeout, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 5000} }, }; // parse args pyb_spi_obj_t *self = MP_OBJ_TO_PTR(pos_args[0]); mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); // get buffers to send from/receive to mp_buffer_info_t bufinfo_send; uint8_t data_send[1]; mp_buffer_info_t bufinfo_recv; vstr_t vstr_recv; mp_obj_t o_ret; if (args[0].u_obj == args[1].u_obj) { // same object for send and receive, it must be a r/w buffer mp_get_buffer_raise(args[0].u_obj, &bufinfo_send, MP_BUFFER_RW); bufinfo_recv = bufinfo_send; o_ret = args[0].u_obj; } else { // get the buffer to send from pyb_buf_get_for_send(args[0].u_obj, &bufinfo_send, data_send); // get the buffer to receive into if (args[1].u_obj == MP_OBJ_NULL) { // only send argument given, so create a fresh buffer of the send length vstr_init_len(&vstr_recv, bufinfo_send.len); bufinfo_recv.len = vstr_recv.len; bufinfo_recv.buf = vstr_recv.buf; o_ret = MP_OBJ_NULL; } else { // recv argument given mp_get_buffer_raise(args[1].u_obj, &bufinfo_recv, MP_BUFFER_WRITE); if (bufinfo_recv.len != bufinfo_send.len) { mp_raise_ValueError("recv must be same length as send"); } o_ret = args[1].u_obj; } } // do the transfer spi_transfer(self->spi, bufinfo_send.len, bufinfo_send.buf, bufinfo_recv.buf, args[2].u_int); // return the received data if (o_ret != MP_OBJ_NULL) { return o_ret; } else { return mp_obj_new_str_from_vstr(&mp_type_bytes, &vstr_recv); } } STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_spi_send_recv_obj, 1, pyb_spi_send_recv); STATIC const mp_rom_map_elem_t pyb_spi_locals_dict_table[] = { // instance methods { MP_ROM_QSTR(MP_QSTR_init), MP_ROM_PTR(&pyb_spi_init_obj) }, { MP_ROM_QSTR(MP_QSTR_deinit), MP_ROM_PTR(&pyb_spi_deinit_obj) }, { MP_ROM_QSTR(MP_QSTR_read), MP_ROM_PTR(&mp_machine_spi_read_obj) }, { MP_ROM_QSTR(MP_QSTR_readinto), MP_ROM_PTR(&mp_machine_spi_readinto_obj) }, { MP_ROM_QSTR(MP_QSTR_write), MP_ROM_PTR(&mp_machine_spi_write_obj) }, { MP_ROM_QSTR(MP_QSTR_write_readinto), MP_ROM_PTR(&mp_machine_spi_write_readinto_obj) }, // legacy methods { MP_ROM_QSTR(MP_QSTR_send), MP_ROM_PTR(&pyb_spi_send_obj) }, { MP_ROM_QSTR(MP_QSTR_recv), MP_ROM_PTR(&pyb_spi_recv_obj) }, { MP_ROM_QSTR(MP_QSTR_send_recv), MP_ROM_PTR(&pyb_spi_send_recv_obj) }, // class constants /// \constant MASTER - for initialising the bus to master mode /// \constant SLAVE - for initialising the bus to slave mode /// \constant MSB - set the first bit to MSB /// \constant LSB - set the first bit to LSB { MP_ROM_QSTR(MP_QSTR_MASTER), MP_ROM_INT(SPI_MODE_MASTER) }, { MP_ROM_QSTR(MP_QSTR_SLAVE), MP_ROM_INT(SPI_MODE_SLAVE) }, { MP_ROM_QSTR(MP_QSTR_MSB), MP_ROM_INT(SPI_FIRSTBIT_MSB) }, { MP_ROM_QSTR(MP_QSTR_LSB), MP_ROM_INT(SPI_FIRSTBIT_LSB) }, /* TODO { MP_ROM_QSTR(MP_QSTR_DIRECTION_2LINES ((uint32_t)0x00000000) { MP_ROM_QSTR(MP_QSTR_DIRECTION_2LINES_RXONLY SPI_CR1_RXONLY { MP_ROM_QSTR(MP_QSTR_DIRECTION_1LINE SPI_CR1_BIDIMODE { MP_ROM_QSTR(MP_QSTR_NSS_SOFT SPI_CR1_SSM { MP_ROM_QSTR(MP_QSTR_NSS_HARD_INPUT ((uint32_t)0x00000000) { MP_ROM_QSTR(MP_QSTR_NSS_HARD_OUTPUT ((uint32_t)0x00040000) */ }; STATIC MP_DEFINE_CONST_DICT(pyb_spi_locals_dict, pyb_spi_locals_dict_table); STATIC void spi_transfer_machine(mp_obj_base_t *self_in, size_t len, const uint8_t *src, uint8_t *dest) { pyb_spi_obj_t *self = (pyb_spi_obj_t*)self_in; spi_transfer(self->spi, len, src, dest, SPI_TRANSFER_TIMEOUT(len)); } STATIC const mp_machine_spi_p_t pyb_spi_p = { .transfer = spi_transfer_machine, }; const mp_obj_type_t pyb_spi_type = { { &mp_type_type }, .name = MP_QSTR_SPI, .print = pyb_spi_print, .make_new = pyb_spi_make_new, .protocol = &pyb_spi_p, .locals_dict = (mp_obj_dict_t*)&pyb_spi_locals_dict, }; /******************************************************************************/ // Implementation of hard SPI for machine module typedef struct _machine_hard_spi_obj_t { mp_obj_base_t base; const spi_t *spi; } machine_hard_spi_obj_t; STATIC const machine_hard_spi_obj_t machine_hard_spi_obj[] = { {{&machine_hard_spi_type}, &spi_obj[0]}, {{&machine_hard_spi_type}, &spi_obj[1]}, {{&machine_hard_spi_type}, &spi_obj[2]}, {{&machine_hard_spi_type}, &spi_obj[3]}, {{&machine_hard_spi_type}, &spi_obj[4]}, {{&machine_hard_spi_type}, &spi_obj[5]}, }; STATIC void machine_hard_spi_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) { machine_hard_spi_obj_t *self = MP_OBJ_TO_PTR(self_in); spi_print(print, self->spi, false); } mp_obj_t machine_hard_spi_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *all_args) { enum { ARG_id, ARG_baudrate, ARG_polarity, ARG_phase, ARG_bits, ARG_firstbit, ARG_sck, ARG_mosi, ARG_miso }; static const mp_arg_t allowed_args[] = { { MP_QSTR_id, MP_ARG_OBJ, {.u_obj = MP_OBJ_NEW_SMALL_INT(-1)} }, { MP_QSTR_baudrate, MP_ARG_INT, {.u_int = 500000} }, { MP_QSTR_polarity, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} }, { MP_QSTR_phase, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} }, { MP_QSTR_bits, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 8} }, { MP_QSTR_firstbit, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = SPI_FIRSTBIT_MSB} }, { MP_QSTR_sck, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} }, { MP_QSTR_mosi, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} }, { MP_QSTR_miso, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} }, }; mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all_kw_array(n_args, n_kw, all_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); // get static peripheral object int spi_id = spi_find(args[ARG_id].u_obj); const machine_hard_spi_obj_t *self = &machine_hard_spi_obj[spi_id - 1]; // here we would check the sck/mosi/miso pins and configure them, but it's not implemented if (args[ARG_sck].u_obj != MP_OBJ_NULL || args[ARG_mosi].u_obj != MP_OBJ_NULL || args[ARG_miso].u_obj != MP_OBJ_NULL) { mp_raise_ValueError("explicit choice of sck/mosi/miso is not implemented"); } // set the SPI configuration values SPI_InitTypeDef *init = &self->spi->spi->Init; init->Mode = SPI_MODE_MASTER; // these parameters are not currently configurable init->Direction = SPI_DIRECTION_2LINES; init->NSS = SPI_NSS_SOFT; init->TIMode = SPI_TIMODE_DISABLE; init->CRCCalculation = SPI_CRCCALCULATION_DISABLE; init->CRCPolynomial = 0; // set configurable paramaters spi_set_params(self->spi, 0xffffffff, args[ARG_baudrate].u_int, args[ARG_polarity].u_int, args[ARG_phase].u_int, args[ARG_bits].u_int, args[ARG_firstbit].u_int); // init the SPI bus spi_init(self->spi, false); return MP_OBJ_FROM_PTR(self); } STATIC void machine_hard_spi_init(mp_obj_base_t *self_in, size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { machine_hard_spi_obj_t *self = (machine_hard_spi_obj_t*)self_in; enum { ARG_baudrate, ARG_polarity, ARG_phase, ARG_bits, ARG_firstbit }; static const mp_arg_t allowed_args[] = { { MP_QSTR_baudrate, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} }, { MP_QSTR_polarity, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} }, { MP_QSTR_phase, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} }, { MP_QSTR_bits, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} }, { MP_QSTR_firstbit, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} }, }; mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); // set the SPI configuration values spi_set_params(self->spi, 0xffffffff, args[ARG_baudrate].u_int, args[ARG_polarity].u_int, args[ARG_phase].u_int, args[ARG_bits].u_int, args[ARG_firstbit].u_int); // re-init the SPI bus spi_init(self->spi, false); } STATIC void machine_hard_spi_deinit(mp_obj_base_t *self_in) { machine_hard_spi_obj_t *self = (machine_hard_spi_obj_t*)self_in; spi_deinit(self->spi); } STATIC void machine_hard_spi_transfer(mp_obj_base_t *self_in, size_t len, const uint8_t *src, uint8_t *dest) { machine_hard_spi_obj_t *self = (machine_hard_spi_obj_t*)self_in; spi_transfer(self->spi, len, src, dest, SPI_TRANSFER_TIMEOUT(len)); } STATIC const mp_machine_spi_p_t machine_hard_spi_p = { .init = machine_hard_spi_init, .deinit = machine_hard_spi_deinit, .transfer = machine_hard_spi_transfer, }; const mp_obj_type_t machine_hard_spi_type = { { &mp_type_type }, .name = MP_QSTR_SPI, .print = machine_hard_spi_print, .make_new = mp_machine_spi_make_new, // delegate to master constructor .protocol = &machine_hard_spi_p, .locals_dict = (mp_obj_dict_t*)&mp_machine_spi_locals_dict, }; const spi_t *spi_from_mp_obj(mp_obj_t o) { if (MP_OBJ_IS_TYPE(o, &pyb_spi_type)) { pyb_spi_obj_t *self = MP_OBJ_TO_PTR(o); return self->spi; } else if (MP_OBJ_IS_TYPE(o, &machine_hard_spi_type)) { machine_hard_spi_obj_t *self = MP_OBJ_TO_PTR(o); return self->spi; } else { mp_raise_TypeError("expecting an SPI object"); } }