/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2019 Jeff Epler for Adafruit Industries * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include #include "extmod/vfs_fat.h" #include "py/gc.h" #include "py/mperrno.h" #include "py/runtime.h" #include "common-hal/audiopwmio/PWMAudioOut.h" #include "common-hal/pulseio/PWMOut.h" #include "shared-bindings/audiopwmio/PWMAudioOut.h" #include "shared-bindings/microcontroller/__init__.h" #include "shared-bindings/microcontroller/Pin.h" #include "supervisor/shared/translate.h" // TODO: This should be the same size as PWMOut.c:pwms[], but there's no trivial way to accomplish that STATIC audiopwmio_pwmaudioout_obj_t* active_audio[4]; #define F_TARGET (62500) #define F_PWM (16000000) // return the REFRESH value, store the TOP value in an out-parameter // Tested for key values (worst relative error = 0.224% = 3.84 cents) // 8000: top = 250 refresh = 7 [ 8000.0] // 22050: top = 242 refresh = 2 [22038.5] // 24000: top = 222 refresh = 2 [24024.0] // 44100: top = 181 refresh = 1 [44198.8] // 48000: top = 167 refresh = 1 [47904.1] STATIC uint32_t calculate_pwm_parameters(uint32_t sample_rate, uint32_t *top_out) { // the desired frequency is the closest integer multiple of sample_rate not less than F_TARGET uint32_t desired_frequency = (F_TARGET + sample_rate - 1) / sample_rate * sample_rate; // The top value is the PWM frequency divided by the desired frequency (round to nearest) uint32_t top = (F_PWM + desired_frequency/2) / desired_frequency; // The actual frequency is the PWM frequency divided by the top value (round to nearest) uint32_t actual_frequency = (F_PWM + top/2) / top; // The multiplier is the actual frequency divided by the sample rate (round to nearest) uint32_t multiplier = (actual_frequency + sample_rate/2) / sample_rate; *top_out = top; return multiplier - 1; } STATIC void activate_audiopwmout_obj(audiopwmio_pwmaudioout_obj_t *self) { for (size_t i=0; i < MP_ARRAY_SIZE(active_audio); i++) { if (!active_audio[i]) { active_audio[i] = self; break; } } } STATIC void deactivate_audiopwmout_obj(audiopwmio_pwmaudioout_obj_t *self) { // Turn off the interrupts to the CPU. self->pwm->INTENCLR = PWM_INTENSET_SEQSTARTED0_Msk | PWM_INTENSET_SEQSTARTED1_Msk; for (size_t i=0; i < MP_ARRAY_SIZE(active_audio); i++) { if (active_audio[i] == self) { active_audio[i] = NULL; } } } void audiopwmout_reset() { for (size_t i=0; i < MP_ARRAY_SIZE(active_audio); i++) { active_audio[i] = NULL; } } STATIC void fill_buffers(audiopwmio_pwmaudioout_obj_t *self, int buf) { self->pwm->EVENTS_SEQSTARTED[1-buf] = 0; uint16_t *dev_buffer = self->buffers[buf]; uint8_t *buffer; uint32_t buffer_length; audioio_get_buffer_result_t get_buffer_result = audiosample_get_buffer(self->sample, false, 0, &buffer, &buffer_length); if (get_buffer_result == GET_BUFFER_ERROR) { common_hal_audiopwmio_pwmaudioout_stop(self); return; } uint32_t num_samples = buffer_length / self->bytes_per_sample / self->sample_channel_count; uint16_t *end_dev_buffer = dev_buffer + 2 * num_samples; if (self->bytes_per_sample == 1) { uint8_t offset = self->signed_to_unsigned ? 0x80 : 0; uint16_t scale = self->scale; while (dev_buffer < end_dev_buffer) { uint8_t rawval = (*buffer++ + offset); uint16_t val = (uint16_t)(((uint32_t)rawval * (uint32_t)scale) >> 8); *dev_buffer++ = val; if (self->sample_channel_count == 1) *dev_buffer++ = val; } } else { uint16_t offset = self->signed_to_unsigned ? 0x8000 : 0; uint16_t scale = self->scale; uint16_t *buffer16 = (uint16_t*)buffer; while (dev_buffer < end_dev_buffer) { uint16_t rawval = (*buffer16++ + offset); uint16_t val = (uint16_t)((rawval * (uint32_t)scale) >> 16); *dev_buffer++ = val; if (self->sample_channel_count == 1) *dev_buffer++ = val; } } self->pwm->SEQ[buf].PTR = (intptr_t)self->buffers[buf]; self->pwm->SEQ[buf].CNT = num_samples*2; if (self->loop && get_buffer_result == GET_BUFFER_DONE) { audiosample_reset_buffer(self->sample, false, 0); } else if (get_buffer_result == GET_BUFFER_DONE) { self->pwm->SHORTS = NRF_PWM_SHORT_SEQEND0_STOP_MASK | NRF_PWM_SHORT_SEQEND1_STOP_MASK; self->stopping = true; } } STATIC void audiopwmout_background_obj(audiopwmio_pwmaudioout_obj_t *self) { if (!common_hal_audiopwmio_pwmaudioout_get_playing(self)) return; if (self->stopping) { bool stopped = (self->pwm->EVENTS_SEQEND[0] || !self->pwm->EVENTS_SEQSTARTED[0]) && (self->pwm->EVENTS_SEQEND[1] || !self->pwm->EVENTS_SEQSTARTED[1]); if (stopped) self->pwm->TASKS_STOP = 1; } else if (!self->paused && !self->single_buffer) { if (self->pwm->EVENTS_SEQSTARTED[0]) fill_buffers(self, 1); if (self->pwm->EVENTS_SEQSTARTED[1]) fill_buffers(self, 0); } } void audiopwmout_background() { // Check the NVIC first because it is part of the CPU and fast to read. if (!NVIC_GetPendingIRQ(PWM0_IRQn) && !NVIC_GetPendingIRQ(PWM1_IRQn) && !NVIC_GetPendingIRQ(PWM2_IRQn) && !NVIC_GetPendingIRQ(PWM3_IRQn)) { return; } // Check our objects because the PWM could be active for some other reason. for (size_t i=0; i < MP_ARRAY_SIZE(active_audio); i++) { if (!active_audio[i]) continue; audiopwmout_background_obj(active_audio[i]); } } // Caller validates that pins are free. void common_hal_audiopwmio_pwmaudioout_construct(audiopwmio_pwmaudioout_obj_t* self, const mcu_pin_obj_t* left_channel, const mcu_pin_obj_t* right_channel, uint16_t quiescent_value) { self->pwm = pwmout_allocate(256, PWM_PRESCALER_PRESCALER_DIV_1, true, NULL, NULL); if (!self->pwm) { mp_raise_RuntimeError(translate("All timers in use")); } self->pwm->PRESCALER = PWM_PRESCALER_PRESCALER_DIV_1; // two uint16_t values per sample when Grouped // n.b. SEQ[#].CNT "counts" are 2 per sample (left and right channels) self->pwm->DECODER = PWM_DECODER_LOAD_Grouped; // we use channels 0 and 2 because these are GROUPED; it lets us save half // the space for sample data (no additional optimization is possible for // single channel) self->pwm->PSEL.OUT[0] = self->left_channel_number = left_channel->number; claim_pin(left_channel); if (right_channel) { self->pwm->PSEL.OUT[2] = self->right_channel_number = right_channel->number; claim_pin(right_channel); } self->quiescent_value = quiescent_value >> 8; self->pwm->ENABLE = 1; // TODO: Ramp from 0 to quiescent value } bool common_hal_audiopwmio_pwmaudioout_deinited(audiopwmio_pwmaudioout_obj_t* self) { return !self->pwm; } void common_hal_audiopwmio_pwmaudioout_deinit(audiopwmio_pwmaudioout_obj_t* self) { if (common_hal_audiopwmio_pwmaudioout_deinited(self)) { return; } deactivate_audiopwmout_obj(self); // TODO: ramp the pwm down from quiescent value to 0 self->pwm->ENABLE = 0; if (self->left_channel_number) reset_pin_number(self->left_channel_number); if (self->right_channel_number) reset_pin_number(self->right_channel_number); pwmout_free_channel(self->pwm, 0); pwmout_free_channel(self->pwm, 2); self->pwm = NULL; m_free(self->buffers[0]); self->buffers[0] = NULL; m_free(self->buffers[1]); self->buffers[1] = NULL; } void common_hal_audiopwmio_pwmaudioout_play(audiopwmio_pwmaudioout_obj_t* self, mp_obj_t sample, bool loop) { if (common_hal_audiopwmio_pwmaudioout_get_playing(self)) { common_hal_audiopwmio_pwmaudioout_stop(self); } self->sample = sample; self->loop = loop; uint32_t sample_rate = audiosample_sample_rate(sample); self->bytes_per_sample = audiosample_bits_per_sample(sample) / 8; uint32_t max_buffer_length; uint8_t spacing; audiosample_get_buffer_structure(sample, /* single channel */ false, &self->single_buffer, &self->signed_to_unsigned, &max_buffer_length, &spacing); self->sample_channel_count = audiosample_channel_count(sample); if (max_buffer_length > UINT16_MAX) { mp_raise_ValueError_varg(translate("Buffer length %d too big. It must be less than %d"), max_buffer_length, UINT16_MAX); } self->buffer_length = (uint16_t)max_buffer_length; self->buffers[0] = m_malloc(self->buffer_length * 2 * sizeof(uint16_t), false); if (!self->single_buffer) self->buffers[1] = m_malloc(self->buffer_length * 2 * sizeof(uint16_t), false); uint32_t top; self->pwm->SEQ[0].REFRESH = self->pwm->SEQ[1].REFRESH = calculate_pwm_parameters(sample_rate, &top); self->scale = top-1; self->pwm->COUNTERTOP = top; self->pwm->LOOP = 1; audiosample_reset_buffer(self->sample, false, 0); activate_audiopwmout_obj(self); self->stopping = false; self->pwm->SHORTS = NRF_PWM_SHORT_LOOPSDONE_SEQSTART0_MASK; fill_buffers(self, 0); self->pwm->SEQ[1].PTR = self->pwm->SEQ[0].PTR; self->pwm->SEQ[1].CNT = self->pwm->SEQ[0].CNT; self->pwm->EVENTS_SEQSTARTED[0] = 0; self->pwm->EVENTS_SEQSTARTED[1] = 0; self->pwm->EVENTS_SEQEND[0] = 0; self->pwm->EVENTS_SEQEND[1] = 0; self->pwm->EVENTS_STOPPED = 0; // Enable the SEQSTARTED interrupts so that they wake the CPU and keep it awake until serviced. // We don't enable them in the NVIC because we don't actually want an interrupt routine to run. self->pwm->INTENSET = PWM_INTENSET_SEQSTARTED0_Msk | PWM_INTENSET_SEQSTARTED1_Msk; self->pwm->TASKS_SEQSTART[0] = 1; self->playing = true; self->paused = false; } void common_hal_audiopwmio_pwmaudioout_stop(audiopwmio_pwmaudioout_obj_t* self) { deactivate_audiopwmout_obj(self); self->pwm->TASKS_STOP = 1; self->stopping = false; self->paused = false; m_free(self->buffers[0]); self->buffers[0] = NULL; m_free(self->buffers[1]); self->buffers[1] = NULL; } bool common_hal_audiopwmio_pwmaudioout_get_playing(audiopwmio_pwmaudioout_obj_t* self) { if (!self->paused && self->pwm->EVENTS_STOPPED) { self->playing = false; self->pwm->EVENTS_STOPPED = 0; } return self->playing; } /* pause/resume present difficulties for the NRF PWM audio module. * * A PWM sequence can be stopped in its tracks by sending a TASKS_STOP event, * but there's no way to pick up the sequence where it was stopped; you could * start at the start of one of the two sequences, but especially for "single buffer" * sample, this seems undesirable. * * Or, you can stop at the end of a sequence so that you don't duplicate anything * when restarting, but again this is unsatisfactory for a "single buffer" sample. * * For now, I've taken the coward's way and left these methods unimplemented. * Perhaps the way forward is to divide even "single buffer" samples into tasks of * only a few ms long, so that they can be stopped/restarted quickly enough that it * feels instant. (This also saves on memory, for long in-memory "single buffer" * samples, since we have to locally take a resampled copy!) */ void common_hal_audiopwmio_pwmaudioout_pause(audiopwmio_pwmaudioout_obj_t* self) { self->paused = true; self->pwm->SHORTS = NRF_PWM_SHORT_SEQEND1_STOP_MASK; } void common_hal_audiopwmio_pwmaudioout_resume(audiopwmio_pwmaudioout_obj_t* self) { self->paused = false; self->pwm->SHORTS = NRF_PWM_SHORT_LOOPSDONE_SEQSTART0_MASK; if (self->pwm->EVENTS_STOPPED) { self->pwm->EVENTS_STOPPED = 0; self->pwm->TASKS_SEQSTART[0] = 1; } } bool common_hal_audiopwmio_pwmaudioout_get_paused(audiopwmio_pwmaudioout_obj_t* self) { return self->paused; }