/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2021 Scott Shawcroft for Adafruit Industries * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include "shared/runtime/interrupt_char.h" #include "py/runtime.h" #include "common-hal/pwmio/PWMOut.h" #include "shared-bindings/pwmio/PWMOut.h" #include "shared-bindings/microcontroller/Processor.h" #include "src/rp2040/hardware_regs/include/hardware/platform_defs.h" #include "src/rp2_common/hardware_clocks/include/hardware/clocks.h" #include "src/rp2_common/hardware_gpio/include/hardware/gpio.h" #include "src/rp2_common/hardware_pwm/include/hardware/pwm.h" uint32_t target_slice_frequencies[NUM_PWM_SLICES]; uint32_t slice_variable_frequency; #define AB_CHANNELS_PER_SLICE 2 static uint32_t channel_use; static uint32_t never_reset_channel; // Per the RP2040 datasheet: // // "A CC value of 0 will produce a 0% output, i.e. the output signal // is always low. A CC value of TOP + 1 (i.e. equal to the period, in // non-phase-correct mode) will produce a 100% output. For example, if // TOP is programmed to 254, the counter will have a period of 255 // cycles, and CC values in the range of 0 to 255 inclusive will // produce duty cycles in the range 0% to 100% inclusive." // // So 65534 should be the maximum top value, and we'll set CC to be TOP+1 as appropriate. #define MAX_TOP 65534 static uint32_t _mask(uint8_t slice, uint8_t ab_channel) { return 1 << (slice * AB_CHANNELS_PER_SLICE + ab_channel); } bool pwmio_claim_slice_ab_channels(uint8_t slice) { uint32_t channel_use_mask_a = _mask(slice, 0); uint32_t channel_use_mask_b = _mask(slice, 1); if ((channel_use & channel_use_mask_a) != 0) { return false; } if ((channel_use & channel_use_mask_b) != 0) { return false; } channel_use |= channel_use_mask_a; channel_use |= channel_use_mask_b; return true; } void pwmio_release_slice_ab_channels(uint8_t slice) { uint32_t channel_mask = _mask(slice, 0); channel_use &= ~channel_mask; channel_mask = _mask(slice, 1); channel_use &= ~channel_mask; } void pwmout_never_reset(uint8_t slice, uint8_t ab_channel) { never_reset_channel |= _mask(slice, ab_channel); } void common_hal_pwmio_pwmout_never_reset(pwmio_pwmout_obj_t *self) { pwmout_never_reset(self->slice, self->ab_channel); never_reset_pin_number(self->pin->number); } void pwmout_reset(void) { // Reset all slices for (size_t slice = 0; slice < NUM_PWM_SLICES; slice++) { bool reset = true; for (size_t ab_channel = 0; ab_channel < AB_CHANNELS_PER_SLICE; ab_channel++) { uint32_t channel_use_mask = _mask(slice, ab_channel); if ((never_reset_channel & channel_use_mask) != 0) { reset = false; continue; } channel_use &= ~channel_use_mask; } if (!reset) { continue; } pwm_set_enabled(slice, false); target_slice_frequencies[slice] = 0; slice_variable_frequency &= ~(1 << slice); } } pwmout_result_t pwmout_allocate(uint8_t slice, uint8_t ab_channel, bool variable_frequency, uint32_t frequency) { uint32_t channel_use_mask = _mask(slice, ab_channel); // Check the channel first. if ((channel_use & channel_use_mask) != 0) { return PWMOUT_ALL_TIMERS_ON_PIN_IN_USE; } // Now check if the slice is in use and if we can share with it. if (target_slice_frequencies[slice] > 0) { // If we want to change frequency then we can't share. if (variable_frequency) { return PWMOUT_ALL_TIMERS_ON_PIN_IN_USE; } // If the other user wants a variable frequency then we can't share either. if ((slice_variable_frequency & (1 << slice)) != 0) { return PWMOUT_ALL_TIMERS_ON_PIN_IN_USE; } // If we're both fixed frequency but we don't match target frequencies then we can't share. if (target_slice_frequencies[slice] != frequency) { return PWMOUT_ALL_TIMERS_ON_PIN_IN_USE; } } channel_use |= channel_use_mask; if (variable_frequency) { slice_variable_frequency |= 1 << slice; } return PWMOUT_OK; } pwmout_result_t common_hal_pwmio_pwmout_construct(pwmio_pwmout_obj_t *self, const mcu_pin_obj_t *pin, uint16_t duty, uint32_t frequency, bool variable_frequency) { self->pin = pin; self->variable_frequency = variable_frequency; self->duty_cycle = duty; claim_pin(pin); if (frequency == 0 || frequency > (common_hal_mcu_processor_get_frequency() / 2)) { return PWMOUT_INVALID_FREQUENCY; } uint8_t slice = pwm_gpio_to_slice_num(pin->number); uint8_t ab_channel = pwm_gpio_to_channel(pin->number); int r = pwmout_allocate(slice, ab_channel, variable_frequency, frequency); if (r != PWMOUT_OK) { return r; } self->slice = slice; self->ab_channel = ab_channel; if (target_slice_frequencies[slice] != frequency) { // Reset the counter and compare values. pwm_hw->slice[slice].ctr = PWM_CH0_CTR_RESET; common_hal_pwmio_pwmout_set_duty_cycle(self, duty); common_hal_pwmio_pwmout_set_frequency(self, frequency); pwm_set_enabled(slice, true); } else { common_hal_pwmio_pwmout_set_frequency(self, frequency); common_hal_pwmio_pwmout_set_duty_cycle(self, duty); } // Connect to the pad last to avoid any glitches from changing settings. gpio_set_function(pin->number, GPIO_FUNC_PWM); return PWMOUT_OK; } bool common_hal_pwmio_pwmout_deinited(pwmio_pwmout_obj_t *self) { return self->pin == NULL; } void pwmout_free(uint8_t slice, uint8_t ab_channel) { uint32_t channel_mask = _mask(slice, ab_channel); channel_use &= ~channel_mask; never_reset_channel &= ~channel_mask; uint32_t slice_mask = ((1 << AB_CHANNELS_PER_SLICE) - 1) << (slice * AB_CHANNELS_PER_SLICE); if ((channel_use & slice_mask) == 0) { target_slice_frequencies[slice] = 0; slice_variable_frequency &= ~(1 << slice); pwm_set_enabled(slice, false); } } void common_hal_pwmio_pwmout_deinit(pwmio_pwmout_obj_t *self) { if (common_hal_pwmio_pwmout_deinited(self)) { return; } pwmout_free(self->slice, self->ab_channel); reset_pin_number(self->pin->number); self->pin = NULL; } extern void common_hal_pwmio_pwmout_set_duty_cycle(pwmio_pwmout_obj_t *self, uint16_t duty) { self->duty_cycle = duty; // Do arithmetic in 32 bits to prevent overflow. uint16_t compare_count; if (duty == 65535) { // Ensure that 100% duty cycle is 100% full on and not rounded down, // but do MIN() to keep value in range, just in case. compare_count = MIN(UINT16_MAX, (uint32_t)self->top + 1); } else { compare_count = ((uint32_t)duty * self->top + MAX_TOP / 2) / MAX_TOP; } // compare_count is the CC register value, which should be TOP+1 for 100% duty cycle. pwm_set_chan_level(self->slice, self->ab_channel, compare_count); } uint16_t common_hal_pwmio_pwmout_get_duty_cycle(pwmio_pwmout_obj_t *self) { return self->duty_cycle; } void pwmio_pwmout_set_top(pwmio_pwmout_obj_t *self, uint16_t top) { self->actual_frequency = common_hal_mcu_processor_get_frequency() / top; self->top = top; pwm_set_clkdiv_int_frac(self->slice, 1, 0); pwm_set_wrap(self->slice, self->top); } void common_hal_pwmio_pwmout_set_frequency(pwmio_pwmout_obj_t *self, uint32_t frequency) { if (frequency == 0 || frequency > (common_hal_mcu_processor_get_frequency() / 2)) { mp_arg_error_invalid(MP_QSTR_frequency); } target_slice_frequencies[self->slice] = frequency; // For low frequencies use the divider to give us full resolution duty_cycle. if (frequency <= (common_hal_mcu_processor_get_frequency() / (1 << 16))) { // Compute the divisor. It's an 8 bit integer and 4 bit fraction. Therefore, // we compute everything * 16 for the fractional part. // This is 1 << 12 because 4 bits are the * 16. uint64_t frequency16 = ((uint64_t)clock_get_hz(clk_sys)) / (1 << 12); uint64_t div16 = frequency16 / frequency; // Round the divisor to try and get closest to the target frequency. We could // also always round up and use TOP to get us closer. We may not need that though. if (frequency16 % frequency >= frequency / 2) { div16 += 1; } if (div16 >= (1 << 12)) { div16 = (1 << 12) - 1; } self->actual_frequency = (frequency16 + (div16 / 2)) / div16; self->top = MAX_TOP; pwm_set_clkdiv_int_frac(self->slice, div16 / 16, div16 % 16); pwm_set_wrap(self->slice, self->top); } else { uint32_t top = common_hal_mcu_processor_get_frequency() / frequency; self->actual_frequency = common_hal_mcu_processor_get_frequency() / top; self->top = MIN(MAX_TOP, top); pwm_set_clkdiv_int_frac(self->slice, 1, 0); // Set TOP register. For 100% duty cycle, CC must be set to TOP+1. pwm_set_wrap(self->slice, self->top); } common_hal_pwmio_pwmout_set_duty_cycle(self, self->duty_cycle); } uint32_t common_hal_pwmio_pwmout_get_frequency(pwmio_pwmout_obj_t *self) { return self->actual_frequency; } bool common_hal_pwmio_pwmout_get_variable_frequency(pwmio_pwmout_obj_t *self) { return self->variable_frequency; } const mcu_pin_obj_t *common_hal_pwmio_pwmout_get_pin(pwmio_pwmout_obj_t *self) { return self->pin; }