/* * This file is part of the Micro Python project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2017 Scott Shawcroft for Adafruit Industries * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "py/binary.h" #include "py/runtime.h" #include "py/runtime0.h" #include "shared-bindings/memorymap/AddressRange.h" //| class AddressRange: //| r"""Presents a range of addresses as a bytearray. //| //| The addresses may access memory or memory mapped peripherals. //| //| Some address ranges may be protected by CircuitPython to prevent errors. //| An exception will be raised when constructing an AddressRange for an //| invalid or protected address. //| //| Multiple AddressRanges may overlap. There is no "claiming" of addresses. //| //| Example usage on ESP32-S2:: //| //| import memorymap //| rtc_slow_mem = memorymap.AddressRange(start=0x50000000, length=0x2000) //| rtc_slow_mem[0:3] = b"\xcc\x10\x00" //| //| Example I/O register usage on RP2040:: //| //| import binascii //| import board //| import digitalio //| import memorymap //| //| def rp2040_set_pad_drive(p, d): //| pads_bank0 = memorymap.AddressRange(start=0x4001C000, length=0x4000) //| pad_ctrl = int.from_bytes(pads_bank0[p*4+4:p*4+8], "little") //| # Pad control register is updated using an MP-safe atomic XOR //| pad_ctrl ^= (d << 4) //| pad_ctrl &= 0x00000030 //| pads_bank0[p*4+0x3004:p*4+0x3008] = pad_ctrl.to_bytes(4, "little") //| //| def rp2040_get_pad_drive(p): //| pads_bank0 = memorymap.AddressRange(start=0x4001C000, length=0x4000) //| pad_ctrl = int.from_bytes(pads_bank0[p*4+4:p*4+8], "little") //| return (pad_ctrl >> 4) & 0x3 //| //| # set GPIO16 pad drive strength to 12 mA //| rp2040_set_pad_drive(16, 3) //| //| # print GPIO16 pad drive strength //| print(rp2040_get_pad_drive(16)) //| """ //| def __init__(self, *, start, length) -> None: //| """Constructs an address range starting at ``start`` and ending at //| ``start + length``. An exception will be raised if any of the //| addresses are invalid or protected.""" //| ... STATIC mp_obj_t memorymap_addressrange_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *all_args) { enum { ARG_start, ARG_length }; static const mp_arg_t allowed_args[] = { { MP_QSTR_start, MP_ARG_KW_ONLY | MP_ARG_REQUIRED | MP_ARG_OBJ }, { MP_QSTR_length, MP_ARG_KW_ONLY | MP_ARG_REQUIRED | MP_ARG_INT }, }; mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all_kw_array(n_args, n_kw, all_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); // Argument start is a pointer into the address map, so we validate it here because a // signed int argument will overflow if it is in the upper half of the map. size_t start; if (mp_obj_is_small_int(args[ARG_start].u_obj)) { start = MP_OBJ_SMALL_INT_VALUE(args[ARG_start].u_obj); } else if (mp_obj_is_exact_type(args[ARG_start].u_obj, &mp_type_int)) { start = mp_obj_int_get_uint_checked(args[ARG_start].u_obj); } else { mp_obj_t arg = mp_unary_op(MP_UNARY_OP_INT_MAYBE, args[ARG_start].u_obj); start = mp_obj_int_get_uint_checked(arg); } size_t length = mp_arg_validate_int_min(args[ARG_length].u_int, 1, MP_QSTR_length); // Check for address range wrap here as this can break port-specific code due to size_t overflow. if (start + length - 1 < start) { mp_raise_ValueError(MP_ERROR_TEXT("Address range wraps around")); } memorymap_addressrange_obj_t *self = mp_obj_malloc(memorymap_addressrange_obj_t, &memorymap_addressrange_type); common_hal_memorymap_addressrange_construct(self, (uint8_t *)start, length); return MP_OBJ_FROM_PTR(self); } //| def __bool__(self) -> bool: ... //| def __len__(self) -> int: //| """Return the length. This is used by (`len`)""" //| ... STATIC mp_obj_t memorymap_addressrange_unary_op(mp_unary_op_t op, mp_obj_t self_in) { memorymap_addressrange_obj_t *self = MP_OBJ_TO_PTR(self_in); uint16_t len = common_hal_memorymap_addressrange_get_length(self); switch (op) { case MP_UNARY_OP_BOOL: return mp_obj_new_bool(len != 0); case MP_UNARY_OP_LEN: return MP_OBJ_NEW_SMALL_INT(len); default: return MP_OBJ_NULL; // op not supported } } STATIC const mp_rom_map_elem_t memorymap_addressrange_locals_dict_table[] = { }; STATIC MP_DEFINE_CONST_DICT(memorymap_addressrange_locals_dict, memorymap_addressrange_locals_dict_table); //| @overload //| def __getitem__(self, index: slice) -> bytearray: ... //| @overload //| def __getitem__(self, index: int) -> int: //| """Returns the value(s) at the given index. //| //| 1, 2, 4 and 8 byte aligned reads will be done in one transaction //| when possible. //| All others may use multiple transactions.""" //| ... //| @overload //| def __setitem__(self, index: slice, value: ReadableBuffer) -> None: ... //| @overload //| def __setitem__(self, index: int, value: int) -> None: //| """Set the value(s) at the given index. //| //| 1, 2, 4 and 8 byte aligned writes will be done in one transaction //| when possible. //| All others may use multiple transactions.""" //| ... //| STATIC mp_obj_t memorymap_addressrange_subscr(mp_obj_t self_in, mp_obj_t index_in, mp_obj_t value) { if (value == MP_OBJ_NULL) { // delete item // slice deletion return MP_OBJ_NULL; // op not supported } else { memorymap_addressrange_obj_t *self = MP_OBJ_TO_PTR(self_in); if (0) { #if MICROPY_PY_BUILTINS_SLICE } else if (mp_obj_is_type(index_in, &mp_type_slice)) { mp_bound_slice_t slice; if (!mp_seq_get_fast_slice_indexes(common_hal_memorymap_addressrange_get_length(self), index_in, &slice)) { mp_raise_NotImplementedError(MP_ERROR_TEXT("only slices with step=1 (aka None) are supported")); } if (value != MP_OBJ_SENTINEL) { #if MICROPY_PY_ARRAY_SLICE_ASSIGN // Assign size_t src_len = slice.stop - slice.start; uint8_t *src_items; if (mp_obj_is_type(value, &mp_type_array) || mp_obj_is_type(value, &mp_type_bytearray) || mp_obj_is_type(value, &mp_type_memoryview) || mp_obj_is_type(value, &mp_type_bytes)) { mp_buffer_info_t bufinfo; mp_get_buffer_raise(value, &bufinfo, MP_BUFFER_READ); if (bufinfo.len != src_len) { mp_raise_ValueError(MP_ERROR_TEXT("Slice and value different lengths.")); } src_len = bufinfo.len; src_items = bufinfo.buf; if (1 != mp_binary_get_size('@', bufinfo.typecode, NULL)) { mp_raise_ValueError(MP_ERROR_TEXT("Array values should be single bytes.")); } } else { mp_raise_NotImplementedError(MP_ERROR_TEXT("array/bytes required on right side")); } common_hal_memorymap_addressrange_set_bytes(self, slice.start, src_items, src_len); return mp_const_none; #else return MP_OBJ_NULL; // op not supported #endif } else { // Read slice. size_t len = slice.stop - slice.start; uint8_t *items = m_new(uint8_t, len); common_hal_memorymap_addressrange_get_bytes(self, slice.start, len, items); return mp_obj_new_bytearray_by_ref(len, items); } #endif } else { // Single index rather than slice. size_t index = mp_get_index(self->base.type, common_hal_memorymap_addressrange_get_length(self), index_in, false); if (value == MP_OBJ_SENTINEL) { // load uint8_t value_out; common_hal_memorymap_addressrange_get_bytes(self, index, 1, &value_out); return MP_OBJ_NEW_SMALL_INT(value_out); } else { // store mp_int_t byte_value = mp_obj_get_int(value); mp_arg_validate_int_range(byte_value, 0, 255, MP_QSTR_bytes); uint8_t short_value = byte_value; common_hal_memorymap_addressrange_set_bytes(self, index, &short_value, 1); return mp_const_none; } } } } MP_DEFINE_CONST_OBJ_TYPE( memorymap_addressrange_type, MP_QSTR_AddressRange, MP_TYPE_FLAG_NONE, make_new, memorymap_addressrange_make_new, locals_dict, (mp_obj_t)&memorymap_addressrange_locals_dict, subscr, memorymap_addressrange_subscr, unary_op, memorymap_addressrange_unary_op );