/*
* This file is part of the Micro Python project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2021 Dan Halbert for Adafruit Industries
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "shared/runtime/context_manager_helpers.h"
#include "py/binary.h"
#include "py/objproperty.h"
#include "py/runtime.h"
#include "shared-bindings/keypad/__init__.h"
#include "shared-bindings/keypad/Event.h"
#include "shared-bindings/keypad/ShiftRegisterKeys.h"
#include "shared-bindings/microcontroller/Pin.h"
#include "shared-bindings/util.h"
//| class ShiftRegisterKeys:
//| """Manage a set of keys attached to an incoming shift register.
//|
//| .. raw:: html
//|
//|
//|
//| Available on these boards
//|
//| {% for board in support_matrix_reverse["keypad.ShiftRegisterKeys"] %}
//| - {{ board }}
//| {% endfor %}
//|
//|
//|
//|
//| """
//|
//| def __init__(
//| self,
//| *,
//| clock: microcontroller.Pin,
//| data: Union[microcontroller.Pin, Sequence[microcontroller.Pin]],
//| latch: microcontroller.Pin,
//| value_to_latch: bool = True,
//| key_count: Union[int, Sequence[int]],
//| value_when_pressed: bool,
//| interval: float = 0.020,
//| max_events: int = 64
//| ) -> None:
//| """
//| Create a `Keys` object that will scan keys attached to a parallel-in serial-out shift register
//| like the 74HC165 or CD4021.
//| Note that you may chain shift registers to load in as many values as you need.
//| Furthermore, you can put multiple shift registers in parallel and share clock and latch.
//|
//| Key number 0 is the first (or more properly, the zero-th) bit read. In the
//| 74HC165, this bit is labeled ``Q7``. Key number 1 will be the value of ``Q6``, etc.
//| With multiple data pins, key numbers of the next pin are sequentially to the current pin.
//|
//| An `EventQueue` is created when this object is created and is available in the `events` attribute.
//|
//| :param microcontroller.Pin clock: The shift register clock pin.
//| The shift register should clock on a low-to-high transition.
//| :param Union[microcontroller.Pin, Sequence[microcontroller.Pin]] data: the incoming shift register data pin(s)
//| :param microcontroller.Pin latch:
//| Pin used to latch parallel data going into the shift register.
//| :param bool value_to_latch: Pin state to latch data being read.
//| ``True`` if the data is latched when ``latch`` goes high
//| ``False`` if the data is latched when ``latch`` goes low.
//| The default is ``True``, which is how the 74HC165 operates. The CD4021 latch is the opposite.
//| Once the data is latched, it will be shifted out by toggling the clock pin.
//| :param Union[int, Sequence[int]] key_count: number of data lines to clock in (per data pin)
//| :param bool value_when_pressed: ``True`` if the pin reads high when the key is pressed.
//| ``False`` if the pin reads low (is grounded) when the key is pressed.
//| :param float interval: Scan keys no more often than ``interval`` to allow for debouncing.
//| ``interval`` is in float seconds. The default is 0.020 (20 msecs).
//| :param int max_events: maximum size of `events` `EventQueue`:
//| maximum number of key transition events that are saved.
//| Must be >= 1.
//| If a new event arrives when the queue is full, the oldest event is discarded.
//| """
//| ...
STATIC mp_obj_t keypad_shiftregisterkeys_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *all_args) {
#if CIRCUITPY_KEYPAD_SHIFTREGISTERKEYS
keypad_shiftregisterkeys_obj_t *self =
mp_obj_malloc(keypad_shiftregisterkeys_obj_t, &keypad_shiftregisterkeys_type);
enum { ARG_clock, ARG_data, ARG_latch, ARG_value_to_latch, ARG_key_count, ARG_value_when_pressed, ARG_interval, ARG_max_events };
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_clock, MP_ARG_KW_ONLY | MP_ARG_REQUIRED | MP_ARG_OBJ },
{ MP_QSTR_data, MP_ARG_KW_ONLY | MP_ARG_REQUIRED | MP_ARG_OBJ },
{ MP_QSTR_latch, MP_ARG_KW_ONLY | MP_ARG_REQUIRED | MP_ARG_OBJ },
{ MP_QSTR_value_to_latch, MP_ARG_KW_ONLY | MP_ARG_BOOL, {.u_bool = true} },
{ MP_QSTR_key_count, MP_ARG_KW_ONLY | MP_ARG_REQUIRED | MP_ARG_OBJ },
{ MP_QSTR_value_when_pressed, MP_ARG_REQUIRED | MP_ARG_KW_ONLY | MP_ARG_BOOL },
{ MP_QSTR_interval, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
{ MP_QSTR_max_events, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 64} },
};
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all_kw_array(n_args, n_kw, all_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
size_t num_data_pins;
if (mp_obj_is_type(args[ARG_data].u_obj, &mcu_pin_type)) {
num_data_pins = 1;
} else {
num_data_pins = (size_t)MP_OBJ_SMALL_INT_VALUE(mp_obj_len(args[ARG_data].u_obj));
}
const mcu_pin_obj_t *data_pins_array[num_data_pins];
if (mp_obj_is_type(args[ARG_data].u_obj, &mcu_pin_type)) {
const mcu_pin_obj_t *datapin = validate_obj_is_free_pin(args[ARG_data].u_obj, MP_QSTR_data);
data_pins_array[0] = datapin;
} else {
for (size_t pin = 0; pin < num_data_pins; pin++) {
const mcu_pin_obj_t *datapin =
validate_obj_is_free_pin(mp_obj_subscr(args[ARG_data].u_obj, MP_OBJ_NEW_SMALL_INT(pin), MP_OBJ_SENTINEL), MP_QSTR_data);
data_pins_array[pin] = datapin;
}
}
size_t num_key_counts;
if (mp_obj_is_int(args[ARG_key_count].u_obj)) {
num_key_counts = 1;
} else {
num_key_counts = (size_t)MP_OBJ_SMALL_INT_VALUE(mp_obj_len(args[ARG_key_count].u_obj));
}
mp_arg_validate_length(num_key_counts, num_data_pins, MP_QSTR_key_count);
size_t key_count_array[num_key_counts];
if (mp_obj_is_int(args[ARG_key_count].u_obj)) {
const size_t key_count = (size_t)mp_arg_validate_int_min(args[ARG_key_count].u_int, 1, MP_QSTR_key_count);
key_count_array[0] = key_count;
} else {
for (size_t kc = 0; kc < num_key_counts; kc++) {
mp_int_t mpint = mp_obj_get_int(mp_obj_subscr(args[ARG_key_count].u_obj, MP_OBJ_NEW_SMALL_INT(kc), MP_OBJ_SENTINEL));
const size_t key_count = (size_t)mp_arg_validate_int_min(mpint, 1, MP_QSTR_key_count);
key_count_array[kc] = key_count;
}
}
const mcu_pin_obj_t *clock = validate_obj_is_free_pin(args[ARG_clock].u_obj, MP_QSTR_clock);
const mcu_pin_obj_t *latch = validate_obj_is_free_pin(args[ARG_latch].u_obj, MP_QSTR_latch);
const bool value_to_latch = args[ARG_value_to_latch].u_bool;
const bool value_when_pressed = args[ARG_value_when_pressed].u_bool;
const mp_float_t interval =
mp_arg_validate_obj_float_non_negative(args[ARG_interval].u_obj, 0.020f, MP_QSTR_interval);
const size_t max_events = (size_t)mp_arg_validate_int_min(args[ARG_max_events].u_int, 1, MP_QSTR_max_events);
common_hal_keypad_shiftregisterkeys_construct(
self, clock, num_data_pins, data_pins_array, latch, value_to_latch, num_key_counts, key_count_array, value_when_pressed, interval, max_events);
return MP_OBJ_FROM_PTR(self);
#else
mp_raise_NotImplementedError_varg(MP_ERROR_TEXT("%q"), MP_QSTR_ShiftRegisterKeys);
#endif
}
#if CIRCUITPY_KEYPAD_SHIFTREGISTERKEYS
//| def deinit(self) -> None:
//| """Stop scanning and release the pins."""
//| ...
STATIC mp_obj_t keypad_shiftregisterkeys_deinit(mp_obj_t self_in) {
keypad_shiftregisterkeys_obj_t *self = MP_OBJ_TO_PTR(self_in);
common_hal_keypad_shiftregisterkeys_deinit(self);
return MP_ROM_NONE;
}
MP_DEFINE_CONST_FUN_OBJ_1(keypad_shiftregisterkeys_deinit_obj, keypad_shiftregisterkeys_deinit);
//| def __enter__(self) -> Keys:
//| """No-op used by Context Managers."""
//| ...
// Provided by context manager helper.
//| def __exit__(self) -> None:
//| """Automatically deinitializes when exiting a context. See
//| :ref:`lifetime-and-contextmanagers` for more info."""
//| ...
STATIC mp_obj_t keypad_shiftregisterkeys___exit__(size_t n_args, const mp_obj_t *args) {
(void)n_args;
common_hal_keypad_shiftregisterkeys_deinit(args[0]);
return MP_ROM_NONE;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(keypad_shiftregisterkeys___exit___obj, 4, 4, keypad_shiftregisterkeys___exit__);
//| def reset(self) -> None:
//| """Reset the internal state of the scanner to assume that all keys are now released.
//| Any key that is already pressed at the time of this call will therefore immediately cause
//| a new key-pressed event to occur.
//| """
//| ...
//| key_count: int
//| """The total number of keys that are being scanned. (read-only)
//| """
//| events: EventQueue
//| """The `EventQueue` associated with this `Keys` object. (read-only)
//| """
//|
STATIC const mp_rom_map_elem_t keypad_shiftregisterkeys_locals_dict_table[] = {
{ MP_ROM_QSTR(MP_QSTR_deinit), MP_ROM_PTR(&keypad_shiftregisterkeys_deinit_obj) },
{ MP_ROM_QSTR(MP_QSTR___enter__), MP_ROM_PTR(&default___enter___obj) },
{ MP_ROM_QSTR(MP_QSTR___exit__), MP_ROM_PTR(&keypad_shiftregisterkeys___exit___obj) },
{ MP_ROM_QSTR(MP_QSTR_events), MP_ROM_PTR(&keypad_generic_events_obj) },
{ MP_ROM_QSTR(MP_QSTR_key_count), MP_ROM_PTR(&keypad_generic_key_count_obj) },
{ MP_ROM_QSTR(MP_QSTR_reset), MP_ROM_PTR(&keypad_generic_reset_obj) },
};
STATIC MP_DEFINE_CONST_DICT(keypad_shiftregisterkeys_locals_dict, keypad_shiftregisterkeys_locals_dict_table);
#endif
MP_DEFINE_CONST_OBJ_TYPE(
keypad_shiftregisterkeys_type,
MP_QSTR_ShiftRegisterKeys,
MP_TYPE_FLAG_HAS_SPECIAL_ACCESSORS,
make_new, keypad_shiftregisterkeys_make_new
#if CIRCUITPY_KEYPAD_SHIFTREGISTERKEYS
, locals_dict, &keypad_shiftregisterkeys_locals_dict
#endif
);