/* * This file is part of the Micro Python project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2021 Dan Halbert for Adafruit Industries * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "shared/runtime/context_manager_helpers.h" #include "py/binary.h" #include "py/objproperty.h" #include "py/runtime.h" #include "shared-bindings/keypad/__init__.h" #include "shared-bindings/keypad/Event.h" #include "shared-bindings/keypad/ShiftRegisterKeys.h" #include "shared-bindings/microcontroller/Pin.h" #include "shared-bindings/util.h" //| class ShiftRegisterKeys: //| """Manage a set of keys attached to an incoming shift register. //| //| .. raw:: html //| //|

//|

//| Available on these boards //| //|
//|

//| //| """ //| //| def __init__( //| self, //| *, //| clock: microcontroller.Pin, //| data: Union[microcontroller.Pin, Sequence[microcontroller.Pin]], //| latch: microcontroller.Pin, //| value_to_latch: bool = True, //| key_count: Union[int, Sequence[int]], //| value_when_pressed: bool, //| interval: float = 0.020, //| max_events: int = 64 //| ) -> None: //| """ //| Create a `Keys` object that will scan keys attached to a parallel-in serial-out shift register //| like the 74HC165 or CD4021. //| Note that you may chain shift registers to load in as many values as you need. //| Furthermore, you can put multiple shift registers in parallel and share clock and latch. //| //| Key number 0 is the first (or more properly, the zero-th) bit read. In the //| 74HC165, this bit is labeled ``Q7``. Key number 1 will be the value of ``Q6``, etc. //| With multiple data pins, key numbers of the next pin are sequentially to the current pin. //| //| An `EventQueue` is created when this object is created and is available in the `events` attribute. //| //| :param microcontroller.Pin clock: The shift register clock pin. //| The shift register should clock on a low-to-high transition. //| :param Union[microcontroller.Pin, Sequence[microcontroller.Pin]] data: the incoming shift register data pin(s) //| :param microcontroller.Pin latch: //| Pin used to latch parallel data going into the shift register. //| :param bool value_to_latch: Pin state to latch data being read. //| ``True`` if the data is latched when ``latch`` goes high //| ``False`` if the data is latched when ``latch`` goes low. //| The default is ``True``, which is how the 74HC165 operates. The CD4021 latch is the opposite. //| Once the data is latched, it will be shifted out by toggling the clock pin. //| :param Union[int, Sequence[int]] key_count: number of data lines to clock in (per data pin) //| :param bool value_when_pressed: ``True`` if the pin reads high when the key is pressed. //| ``False`` if the pin reads low (is grounded) when the key is pressed. //| :param float interval: Scan keys no more often than ``interval`` to allow for debouncing. //| ``interval`` is in float seconds. The default is 0.020 (20 msecs). //| :param int max_events: maximum size of `events` `EventQueue`: //| maximum number of key transition events that are saved. //| Must be >= 1. //| If a new event arrives when the queue is full, the oldest event is discarded. //| """ //| ... STATIC mp_obj_t keypad_shiftregisterkeys_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *all_args) { #if CIRCUITPY_KEYPAD_SHIFTREGISTERKEYS keypad_shiftregisterkeys_obj_t *self = mp_obj_malloc(keypad_shiftregisterkeys_obj_t, &keypad_shiftregisterkeys_type); enum { ARG_clock, ARG_data, ARG_latch, ARG_value_to_latch, ARG_key_count, ARG_value_when_pressed, ARG_interval, ARG_max_events }; static const mp_arg_t allowed_args[] = { { MP_QSTR_clock, MP_ARG_KW_ONLY | MP_ARG_REQUIRED | MP_ARG_OBJ }, { MP_QSTR_data, MP_ARG_KW_ONLY | MP_ARG_REQUIRED | MP_ARG_OBJ }, { MP_QSTR_latch, MP_ARG_KW_ONLY | MP_ARG_REQUIRED | MP_ARG_OBJ }, { MP_QSTR_value_to_latch, MP_ARG_KW_ONLY | MP_ARG_BOOL, {.u_bool = true} }, { MP_QSTR_key_count, MP_ARG_KW_ONLY | MP_ARG_REQUIRED | MP_ARG_OBJ }, { MP_QSTR_value_when_pressed, MP_ARG_REQUIRED | MP_ARG_KW_ONLY | MP_ARG_BOOL }, { MP_QSTR_interval, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} }, { MP_QSTR_max_events, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 64} }, }; mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all_kw_array(n_args, n_kw, all_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); size_t num_data_pins; if (mp_obj_is_type(args[ARG_data].u_obj, &mcu_pin_type)) { num_data_pins = 1; } else { num_data_pins = (size_t)MP_OBJ_SMALL_INT_VALUE(mp_obj_len(args[ARG_data].u_obj)); } const mcu_pin_obj_t *data_pins_array[num_data_pins]; if (mp_obj_is_type(args[ARG_data].u_obj, &mcu_pin_type)) { const mcu_pin_obj_t *datapin = validate_obj_is_free_pin(args[ARG_data].u_obj, MP_QSTR_data); data_pins_array[0] = datapin; } else { for (size_t pin = 0; pin < num_data_pins; pin++) { const mcu_pin_obj_t *datapin = validate_obj_is_free_pin(mp_obj_subscr(args[ARG_data].u_obj, MP_OBJ_NEW_SMALL_INT(pin), MP_OBJ_SENTINEL), MP_QSTR_data); data_pins_array[pin] = datapin; } } size_t num_key_counts; if (mp_obj_is_int(args[ARG_key_count].u_obj)) { num_key_counts = 1; } else { num_key_counts = (size_t)MP_OBJ_SMALL_INT_VALUE(mp_obj_len(args[ARG_key_count].u_obj)); } mp_arg_validate_length(num_key_counts, num_data_pins, MP_QSTR_key_count); size_t key_count_array[num_key_counts]; if (mp_obj_is_int(args[ARG_key_count].u_obj)) { const size_t key_count = (size_t)mp_arg_validate_int_min(args[ARG_key_count].u_int, 1, MP_QSTR_key_count); key_count_array[0] = key_count; } else { for (size_t kc = 0; kc < num_key_counts; kc++) { mp_int_t mpint = mp_obj_get_int(mp_obj_subscr(args[ARG_key_count].u_obj, MP_OBJ_NEW_SMALL_INT(kc), MP_OBJ_SENTINEL)); const size_t key_count = (size_t)mp_arg_validate_int_min(mpint, 1, MP_QSTR_key_count); key_count_array[kc] = key_count; } } const mcu_pin_obj_t *clock = validate_obj_is_free_pin(args[ARG_clock].u_obj, MP_QSTR_clock); const mcu_pin_obj_t *latch = validate_obj_is_free_pin(args[ARG_latch].u_obj, MP_QSTR_latch); const bool value_to_latch = args[ARG_value_to_latch].u_bool; const bool value_when_pressed = args[ARG_value_when_pressed].u_bool; const mp_float_t interval = mp_arg_validate_obj_float_non_negative(args[ARG_interval].u_obj, 0.020f, MP_QSTR_interval); const size_t max_events = (size_t)mp_arg_validate_int_min(args[ARG_max_events].u_int, 1, MP_QSTR_max_events); common_hal_keypad_shiftregisterkeys_construct( self, clock, num_data_pins, data_pins_array, latch, value_to_latch, num_key_counts, key_count_array, value_when_pressed, interval, max_events); return MP_OBJ_FROM_PTR(self); #else mp_raise_NotImplementedError_varg(MP_ERROR_TEXT("%q"), MP_QSTR_ShiftRegisterKeys); #endif } #if CIRCUITPY_KEYPAD_SHIFTREGISTERKEYS //| def deinit(self) -> None: //| """Stop scanning and release the pins.""" //| ... STATIC mp_obj_t keypad_shiftregisterkeys_deinit(mp_obj_t self_in) { keypad_shiftregisterkeys_obj_t *self = MP_OBJ_TO_PTR(self_in); common_hal_keypad_shiftregisterkeys_deinit(self); return MP_ROM_NONE; } MP_DEFINE_CONST_FUN_OBJ_1(keypad_shiftregisterkeys_deinit_obj, keypad_shiftregisterkeys_deinit); //| def __enter__(self) -> Keys: //| """No-op used by Context Managers.""" //| ... // Provided by context manager helper. //| def __exit__(self) -> None: //| """Automatically deinitializes when exiting a context. See //| :ref:`lifetime-and-contextmanagers` for more info.""" //| ... STATIC mp_obj_t keypad_shiftregisterkeys___exit__(size_t n_args, const mp_obj_t *args) { (void)n_args; common_hal_keypad_shiftregisterkeys_deinit(args[0]); return MP_ROM_NONE; } STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(keypad_shiftregisterkeys___exit___obj, 4, 4, keypad_shiftregisterkeys___exit__); //| def reset(self) -> None: //| """Reset the internal state of the scanner to assume that all keys are now released. //| Any key that is already pressed at the time of this call will therefore immediately cause //| a new key-pressed event to occur. //| """ //| ... //| key_count: int //| """The total number of keys that are being scanned. (read-only) //| """ //| events: EventQueue //| """The `EventQueue` associated with this `Keys` object. (read-only) //| """ //| STATIC const mp_rom_map_elem_t keypad_shiftregisterkeys_locals_dict_table[] = { { MP_ROM_QSTR(MP_QSTR_deinit), MP_ROM_PTR(&keypad_shiftregisterkeys_deinit_obj) }, { MP_ROM_QSTR(MP_QSTR___enter__), MP_ROM_PTR(&default___enter___obj) }, { MP_ROM_QSTR(MP_QSTR___exit__), MP_ROM_PTR(&keypad_shiftregisterkeys___exit___obj) }, { MP_ROM_QSTR(MP_QSTR_events), MP_ROM_PTR(&keypad_generic_events_obj) }, { MP_ROM_QSTR(MP_QSTR_key_count), MP_ROM_PTR(&keypad_generic_key_count_obj) }, { MP_ROM_QSTR(MP_QSTR_reset), MP_ROM_PTR(&keypad_generic_reset_obj) }, }; STATIC MP_DEFINE_CONST_DICT(keypad_shiftregisterkeys_locals_dict, keypad_shiftregisterkeys_locals_dict_table); #endif MP_DEFINE_CONST_OBJ_TYPE( keypad_shiftregisterkeys_type, MP_QSTR_ShiftRegisterKeys, MP_TYPE_FLAG_HAS_SPECIAL_ACCESSORS, make_new, keypad_shiftregisterkeys_make_new #if CIRCUITPY_KEYPAD_SHIFTREGISTERKEYS , locals_dict, &keypad_shiftregisterkeys_locals_dict #endif );