coroutines don't have __next__; they also call themselves coroutines.
This does not change the fact that `async def` methods are generators,
but it does make them behave more like CPython.
Because the argument arrays may overlap, as show by the new tests in this
commit.
Also remove the debugging comments for these macros, add a new comment
about overlapping regions, and separate the macros by blank lines to make
them easier to read.
Fixes issue #6244.
Signed-off-by: Damien George <damien@micropython.org>
This commit fixes lookups of class members to make it so that built-in
functions that are used as methods/functions of a class work correctly.
The mp_convert_member_lookup() function is pretty much completely changed
by this commit, but for the most part it's just reorganised and the
indenting changed. The functional changes are:
- staticmethod and classmethod checks moved to later in the if-logic,
because they are less common and so should be checked after the more
common cases.
- The explicit mp_obj_is_type(member, &mp_type_type) check is removed
because it's now subsumed by other, more general tests in this function.
- MP_TYPE_FLAG_BINDS_SELF and MP_TYPE_FLAG_BUILTIN_FUN type flags added to
make the checks in this function much simpler (now they just test this
bit in type->flags).
- An extra check is made for mp_obj_is_instance_type(type) to fix lookup of
built-in functions.
Fixes#1326 and #6198.
Signed-off-by: Damien George <damien@micropython.org>
There's no reason to have them non-sequential, this was likely a typo from
commit 9ec1caf42e7733b5141b7aecf1b6e58834a94bf7.
Signed-off-by: Damien George <damien@micropython.org>
This allows complex binary operations to fail gracefully with unsupported
operation rather than raising an exception, so that special methods work
correctly.
Signed-off-by: Damien George <damien@micropython.org>
Long ago, prior to 0ef01d0a75b8b2f48a72f0041e048a390b9e75b6, fixed and
ordered maps were the same setting with the "table_is_fixed_array" member
of mp_map_t. But these settings are actually independent, and it is
possible to have is_fixed=1, is_ordered=0 (although this can currently
only be done by tools/cc1). So update the comments to reflect this.
The behavior mirrors the instance object dict attribute where a copy of the
local attributes are provided (unless the dict is read-only, then that dict
itself is returned, as an optimisation). MicroPython does not support
modifying this dict because the changes will not be reflected in the class.
The feature is only enabled if MICROPY_CPYTHON_COMPAT is set, the same as
the instance version.
Initially some of these were found building the unix coverage variant on
MacOS because that build uses clang and has -Wdouble-promotion enabled, and
clang performs more vigorous promotion checks than gcc. Additionally the
codebase has been compiled with clang and msvc (the latter with warning
level 3), and with MICROPY_FLOAT_IMPL_FLOAT to find the rest of the
conversions.
Fixes are implemented either as explicit casts, or by using the correct
type, or by using one of the utility functions to handle floating point
casting; these have been moved from nativeglue.c to the public API.
TimeoutError was added back in 077812b2abe3f5e5325194f9694dad7eb38186dd for
the cc3200 port. In f522849a4d5a978ac3d322d71a755f75d07e8ce6 the cc3200
port enabled use of it in the socket module aliased to socket.timeout. So
it was never added to the builtins. Then it was replaced by
OSError(ETIMEDOUT) in 047af9b10bfc6b0ec412f8450c6bec10ab95254b.
The esp32 port enables this exception, since the very beginning of that
port, but it could never be accessed because it's not in builtins.
It's being removed: 1) to not encourage its use; 2) because there are a lot
of other OSError subclasses which are not defined at all, and having
TimeoutError is a bit inconsistent.
Note that ports can add anything to the builtins via MICROPY_PORT_BUILTINS.
And they can also define their own exceptions using the
MP_DEFINE_EXCEPTION() macro.
The decompression of error-strings is only done if the string is accessed
via printing or via er.args. Tests are added for this feature to ensure
the decompression works.
And rename it to mp_obj_cast_to_native_base() to indicate this. This
allows users of this function to easily support native and native-subclass
objects in the same way (by just passing the object through this function).
Follow up to recent commit ad7213d3c31bccb26a3f54f7492ccf4b0cc920f3, the
name "varg2" is misleading, vlist describes better that the argument is a
va_list. This name also matches CircuitPython, which already has such
helper functions.
Both bool and namedtuple will check against other types for equality; int,
float and complex for bool, and tuple for namedtuple. So to make them work
after the recent commit 3aab54bf434e7f025a91ea05052f1bac439fad8c they would
need MP_TYPE_FLAG_NEEDS_FULL_EQ_TEST set. But that makes all bool and
namedtuple equality checks less efficient because mp_obj_equal_not_equal()
could no longer short-cut x==x, and would need to try __ne__. To improve
this, this commit splits the MP_TYPE_FLAG_NEEDS_FULL_EQ_TEST flags into 3
separate flags to give types more fine-grained control over how their
equality behaves. These new flags are then used to fix bool and namedtuple
equality.
Fixes issue #5615 and #5620.
This commit implements a more complete replication of CPython's behaviour
for equality and inequality testing of objects. This addresses the issues
discussed in #5382 and a few other inconsistencies. Improvements over the
old code include:
- Support for returning non-boolean results from comparisons (as used by
numpy and others).
- Support for non-reflexive equality tests.
- Preferential use of __ne__ methods and MP_BINARY_OP_NOT_EQUAL binary
operators for inequality tests, when available.
- Fallback to op2 == op1 or op2 != op1 when op1 does not implement the
(in)equality operators.
The scheme here makes use of a new flag, MP_TYPE_FLAG_NEEDS_FULL_EQ_TEST,
in the flags word of mp_obj_type_t to indicate if various shortcuts can or
cannot be used when performing equality and inequality tests. Currently
four built-in classes have the flag set: float and complex are
non-reflexive (since nan != nan) while bytearray and frozenszet instances
can equal other builtin class instances (bytes and set respectively). The
flag is also set for any new class defined by the user.
This commit also includes a more comprehensive set of tests for the
behaviour of (in)equality operators implemented in special methods.
Commit d96cfd13e3a464862cecffb2718c6286b52c77b0 introduced a regression in
testing for bool objects, that such objects were in some cases no longer
recognised and bools, eg when using mp_obj_is_type(o, &mp_type_bool), or
mp_obj_is_integer(o).
This commit fixes that problem by adding mp_obj_is_bool(o). Builds with
MICROPY_OBJ_IMMEDIATE_OBJS enabled check if the object is any of the const
True or False objects. Builds without it use the old method of ->type
checking, which compiles to smaller code (compared with the former
mentioned method).
Fixes#5538.
Can be used where mp_obj_int_get_checked() will overflow due to the
sign-bit solely. This returns an mp_uint_t, so it also verifies the given
integer is not negative.
Currently implemented only for mpz configurations.
This option (enabled by default for object representation A, B, C) makes
None/False/True objects immediate objects, ie they are no longer a concrete
object in ROM but are rather just values, eg None=0x6 for representation A.
Doing this saves a considerable amount of code size, due to these objects
being widely used:
bare-arm: -392 -0.591%
minimal x86: -252 -0.170% [incl +52(data)]
unix x64: -624 -0.125% [incl -128(data)]
unix nanbox: +0 +0.000%
stm32: -1940 -0.510% PYBV10
cc3200: -1216 -0.659%
esp8266: -404 -0.062% GENERIC
esp32: -732 -0.064% GENERIC[incl +48(data)]
nrf: -988 -0.675% pca10040
samd: -564 -0.556% ADAFRUIT_ITSYBITSY_M4_EXPRESS
Thanks go to @Jongy aka Yonatan Goldschmidt for the idea.
This commit adjusts the definition of qstr encoding in all object
representations by taking a single bit from the qstr space and using it to
distinguish between qstrs and a new kind of literal object: immediate
objects. In other words, the qstr space is divided in two pieces, one half
for qstrs and the other half for immediate objects.
There is still enough room for qstr values (29 bits in representation A on
a 32-bit architecture, and 19 bits in representation C) and the new
immediate objects can be used for things like None, False and True.
Most types are in rodata/ROM, and mp_obj_base_t.type is a constant pointer,
so enforce this const-ness throughout the code base. If a type ever needs
to be modified (eg a user type) then a simple cast can be used.
Instances of the slice class are passed to __getitem__() on objects when
the user indexes them with a slice. In practice the majority of the time
(other than passing it on untouched) is to work out what the slice means in
the context of an array dimension of a particular length. Since Python 2.3
there has been a method on the slice class, indices(), that takes a
dimension length and returns the real start, stop and step, accounting for
missing or negative values in the slice spec. This commit implements such
a indices() method on the slice class.
It is configurable at compile-time via MICROPY_PY_BUILTINS_SLICE_INDICES,
disabled by default, enabled on unix, stm32 and esp32 ports.
This commit also adds new tests for slice indices and for slicing unicode
strings.
The qst value is always small enough to fit in 31-bits (even less) and
using a 32-bit shift rather than a 64-bit shift reduces code size by about
300 bytes.
During make, makemoduledefs.py parses the current builds c files for
MP_REGISTER_MODULE(module_name, obj_module, enabled_define)
These are used to generate a header with the required entries for
"mp_rom_map_elem_t mp_builtin_module_table[]" in py/objmodule.c
The new compile-time option is MICROPY_DEBUG_MP_OBJ_SENTINELS, disabled by
default. This is to allow finer control of whether this debugging feature
is enabled or not (because, for example, this setting must be the same for
mpy-cross and the MicroPython main code when using native code generation).
These macros could in principle be (inline) functions so it makes sense to
have them lower case, to match the other C API functions.
The remaining macros that are upper case are:
- MP_OBJ_TO_PTR, MP_OBJ_FROM_PTR
- MP_OBJ_NEW_SMALL_INT, MP_OBJ_SMALL_INT_VALUE
- MP_OBJ_NEW_QSTR, MP_OBJ_QSTR_VALUE
- MP_OBJ_FUN_MAKE_SIG
- MP_DECLARE_CONST_xxx
- MP_DEFINE_CONST_xxx
These must remain macros because they are used when defining const data (at
least, MP_OBJ_NEW_SMALL_INT is so it makes sense to have
MP_OBJ_SMALL_INT_VALUE also a macro).
For those macros that have been made lower case, compatibility macros are
provided for the old names so that users do not need to change their code
immediately.
For architectures where size_t is less than 32 bits (eg 16 bits) the args
must be casted to uint32_t so the left shift will work. For architectures
where size_t is greater than 32 bits (eg 64 bits) this new casting will not
lose any bits because the end result must anyway fit in a uint32_t.