This is a slight trade-off with code size, in places where a "_varg"
mp_raise variant is now used. The net savings on trinket_m0 is
just 32 bytes.
It also means that the translation will include the original English
text, and cannot be translated. These are usually names of Python
types such as int, set, or dict or special values such as "inf" or
"Nan".
The behavior mirrors the instance object dict attribute where a copy of the
local attributes are provided (unless the dict is read-only, then that dict
itself is returned, as an optimisation). MicroPython does not support
modifying this dict because the changes will not be reflected in the class.
The feature is only enabled if MICROPY_CPYTHON_COMPAT is set, the same as
the instance version.
Introduces a way to place CircuitPython code and data into
tightly coupled memory (TCM) which is accessible by the CPU in a
single cycle. It also frees up room in the corresponding cache for
intermittent data. Loading from external flash is slow!
The data cache is also now enabled.
Adds support for the iMX RT 1021 chip. Adds three new boards:
* iMX RT 1020 EVK
* iMX RT 1060 EVK
* Teensy 4.0
Related to #2492, #2472 and #2477. Fixes#2475.
JSON requires that keys of objects be strings. CPython will therefore
automatically quote simple types (NoneType, bool, int, float) when they are
used directly as keys in JSON output. To prevent subtle bugs and emit
compliant JSON, MicroPython should at least test for such keys so they
aren't silently let through. Then doing the actual quoting is a similar
cost to raising an exception, so that's what is implemented by this patch.
Fixes issue #4790.
These macros could in principle be (inline) functions so it makes sense to
have them lower case, to match the other C API functions.
The remaining macros that are upper case are:
- MP_OBJ_TO_PTR, MP_OBJ_FROM_PTR
- MP_OBJ_NEW_SMALL_INT, MP_OBJ_SMALL_INT_VALUE
- MP_OBJ_NEW_QSTR, MP_OBJ_QSTR_VALUE
- MP_OBJ_FUN_MAKE_SIG
- MP_DECLARE_CONST_xxx
- MP_DEFINE_CONST_xxx
These must remain macros because they are used when defining const data (at
least, MP_OBJ_NEW_SMALL_INT is so it makes sense to have
MP_OBJ_SMALL_INT_VALUE also a macro).
For those macros that have been made lower case, compatibility macros are
provided for the old names so that users do not need to change their code
immediately.
It's a very simple function and saves code, and improves efficiency, by
being inline. Note that this is an auxiliary helper function and so
doesn't need mp_check_self -- that's used for functions that can be
accessed directly from Python code (eg from a method table).
Before this patch MP_BINARY_OP_IN had two meanings: coming from bytecode it
meant that the args needed to be swapped, but coming from within the
runtime meant that the args were already in the correct order. This lead
to some confusion in the code and comments stating how args were reversed.
It also lead to 2 bugs: 1) containment for a subclass of a native type
didn't work; 2) the expression "{True} in True" would illegally succeed and
return True. In both of these cases it was because the args to
MP_BINARY_OP_IN ended up being reversed twice.
To fix these things this patch introduces MP_BINARY_OP_CONTAINS which
corresponds exactly to the __contains__ special method, and this is the
operator that built-in types should implement. MP_BINARY_OP_IN is now only
emitted by the compiler and is converted to MP_BINARY_OP_CONTAINS by
swapping the arguments.
Header files that are considered internal to the py core and should not
normally be included directly are:
py/nlr.h - internal nlr configuration and declarations
py/bc0.h - contains bytecode macro definitions
py/runtime0.h - contains basic runtime enums
Instead, the top-level header files to include are one of:
py/obj.h - includes runtime0.h and defines everything to use the
mp_obj_t type
py/runtime.h - includes mpstate.h and hence nlr.h, obj.h, runtime0.h,
and defines everything to use the general runtime support functions
Additional, specific headers (eg py/objlist.h) can be included if needed.
The unary-op/binary-op enums are already defined, and there are no
arithmetic tricks used with these types, so it makes sense to use the
correct enum type for arguments that take these values. It also reduces
code size quite a bit for nan-boxing builds.
The common cases for inheritance are 0 or 1 parent types, for both built-in
types (eg built-in exceptions) as well as user defined types. So it makes
sense to optimise the case of 1 parent type by storing just the type and
not a tuple of 1 value (that value being the single parent type).
This patch makes such an optimisation. Even though there is a bit more
code to handle the two cases (either a single type or a tuple with 2 or
more values) it helps reduce overall code size because it eliminates the
need to create a static tuple to hold single parents (eg for the built-in
exceptions). It also helps reduce RAM usage for user defined types that
only derive from a single parent.
Changes in code size (in bytes) due to this patch:
bare-arm: -16
minimal (x86): -176
unix (x86-64): -320
unix nanbox: -384
stmhal: -64
cc3200: -32
esp8266: -108
Allows to iterate over the following without allocating on the heap:
- tuple
- list
- string, bytes
- bytearray, array
- dict (not dict.keys, dict.values, dict.items)
- set, frozenset
Allows to call the following without heap memory:
- all, any, min, max, sum
TODO: still need to allocate stack memory in bytecode for iter_buf.
The first argument to the type.make_new method is naturally a uPy type,
and all uses of this argument cast it directly to a pointer to a type
structure. So it makes sense to just have it a pointer to a type from
the very beginning (and a const pointer at that). This patch makes
such a change, and removes all unnecessary casting to/from mp_obj_t.