This feature is controlled at compile time by MICROPY_PY_URE_SUB, disabled
by default.
Thanks to @dmazzella for the original patch for this feature; see #3770.
This feature is controlled at compile time by
MICROPY_PY_URE_MATCH_SPAN_START_END, disabled by default.
Thanks to @dmazzella for the original patch for this feature; see #3770.
This feature is controlled at compile time by MICROPY_PY_URE_MATCH_GROUPS,
disabled by default.
Thanks to @dmazzella for the original patch for this feature; see #3770.
This changes a number of things in displayio:
* Introduces BuiltinFont and Glyph so the built in font can be used by libraries. For boards with
a font it is available as board.TERMINAL_FONT. Fixes#1172
* Remove _load_row from Bitmap in favor of bitmap[] access. Index can be x/y tuple or overall index. Fixes#1191
* Add width and height properties to Bitmap.
* Add insert and [] access to Group. Fixes#1518
* Add index param to pop on Group.
* Terminal no longer takes unicode character info. It takes a BuiltinFont instead.
* Fix Terminal's handling of [###D vt100 commands used when up arrowing into repl history.
* Add x and y positions to Group plus scale as well.
* Add bitmap accessor for BuiltinFont
This creates a common safe mode mechanic that ports can share.
As a result, the nRF52 now has safe mode support as well.
The common safe mode adds a 700ms delay at startup where a reset
during that window will cause a reset into safe mode. This window
is designated by a yellow status pixel and flashing the single led
three times.
A couple NeoPixel fixes are included for the nRF52 as well.
Fixes#1034. Fixes#990. Fixes#615.
The backtrace cannot be given because it relies on the validity
of the qstr data structures on the heap which may have been
corrupted.
In fact, it still can crash hard when the bytecode itself is
overwritten. To fix, we'd need a way to skip gathering the
backtrace completely.
This also increases the default stack size on M4s so it can
accomodate the stack needed by ASF4s nvm API.
This adds support for the OSError attributes : errno, strerror, filename and filename2.
CPython only sets errno if 2 arguments has been passed in. This has not been implemented here.
CPython OSError.args is capped at 2 items for backward compatibility reasons. This has not been
implemented here.
MICROPY_CPYTHON_COMPAT has to be enabled to get these attributes.
mp_common_errno_to_str() has been extended to check mp_errno_to_str() as well. This is done to ease
reuse for the strerror argument.
Add traceback chain to sys.exec_info()[2].
No actual frame info is added, but just enough to recreate the printed
exception traceback.
Used by the unittest module which collects errors and failures and prints
them at the end.
This gives access to the function underlying the bound method.
Used in the converted CPython stdlib logging.Formatter class to handle
overrriding a default converter method bound to a class variable.
The method becomes bound when accessed from an instance of that class.
I didn't investigate why CircuitPython turns it into a bound method.
This reverts commit 869024dd6e.
Ctrl-C stopped producing KeyboardInterrupt with this change on CircuitPython.
The Unix and stm32 ports handles Ctrl-C differently with a handler which is
probably why they where not affected.
Fixes#1092
This saves code space in builds which use link-time optimization.
The optimization drops the untranslated strings and replaces them
with a compressed_string_t struct. It can then be decompressed to
a c string.
Builds without LTO work as well but include both untranslated
strings and compressed strings.
This work could be expanded to include QSTRs and loaded strings if
a compress method is added to C. Its tracked in #531.
Imports generate a lot of garbage so cleaning it up immediately
reduces the likelihood longer lived data structures don't end up in
the middle of the heap.
Fixes#856
The existing mp_get_stream_raise() helper does explicit checks that the
input object is a real pointer object, has a non-NULL stream protocol, and
has the desired stream C method (read/write/ioctl). In most cases it is
not necessary to do these checks because it is guaranteed that the input
object has the stream protocol and desired C methods. For example, native
objects that use the stream wrappers (eg mp_stream_readinto_obj) in their
locals dict always have the stream protocol (or else they shouldn't have
these wrappers in their locals dict).
This patch introduces an efficient mp_get_stream() which doesn't do any
checks and just extracts the stream protocol struct. This should be used
in all cases where the argument object is known to be a stream. The
existing mp_get_stream_raise() should be used primarily to verify that an
object does have the correct stream protocol methods.
All uses of mp_get_stream_raise() in py/stream.c have been converted to use
mp_get_stream() because the argument is guaranteed to be a proper stream
object.
This patch improves efficiency of stream operations and reduces code size.
This patch changes dupterm to call the native C stream methods on the
connected stream objects, instead of calling the Python readinto/write
methods. This is much more efficient for native stream objects like UART
and webrepl and doesn't require allocating a special dupterm array.
This change is a minor breaking change from the user's perspective because
dupterm no longer accepts pure user stream objects to duplicate on. But
with the recent addition of uio.IOBase it is possible to still create such
classes just by inheriting from uio.IOBase, for example:
import uio, uos
class MyStream(uio.IOBase):
def write(self, buf):
# existing write implementation
def readinto(self, buf):
# existing readinto implementation
uos.dupterm(MyStream())
Via the config value MICROPY_PY_UHASHLIB_SHA256. Default to enabled to
keep backwards compatibility.
Also add default value for the sha1 class, to at least document its
existence.
A user class derived from IOBase and implementing readinto/write/ioctl can
now be used anywhere a native stream object is accepted.
The mapping from C to Python is:
stream_p->read --> readinto(buf)
stream_p->write --> write(buf)
stream_p->ioctl --> ioctl(request, arg)
Among other things it allows the user to:
- create an object which can be passed as the file argument to print:
print(..., file=myobj), and then print will pass all the data to the
object via the objects write method (same as CPython)
- pass a user object to uio.BufferedWriter to buffer the writes (same as
CPython)
- use select.select on a user object
- register user objects with select.poll, in particular so user objects can
be used with uasyncio
- create user files that can be returned from user filesystems, and import
can import scripts from these user files
For example:
class MyOut(io.IOBase):
def write(self, buf):
print('write', repr(buf))
return len(buf)
print('hello', file=MyOut())
The feature is enabled via MICROPY_PY_IO_IOBASE which is disabled by
default.