This adds I2SOut and PDMIn support via PIO.
StateMachines can now:
* read and read while writing
* transfer in 1, 2 or 4 byte increments
* init pins based on expected defaults automatically
* be stopped and restarted
* rxfifo can be cleared and rxstalls detected (good for tracking when
the reading code isn't keeping up)
Fixes#4162
This commit implements basic NVS support for the esp32. It follows the
pattern of the esp32.Partition class and exposes an NVS object per NVS
namespace. The initial support provided is only for signed 32-bit integers
and binary blobs. It's easy (albeit a bit tedious) to add support for
more types.
See discussions in: #4436, #4707, #6780
The underlying OS (the ESP-IDF) uses it's own internal errno codes and so
it's simpler and cleaner to use those rather than trying to convert
everything to the values defined in py/mperrno.h.
For certain operands to mpn_div, the existing code path for
`DIG_SIZE == MPZ_DBL_DIG_SIZE / 2` had a bug in it where borrow could still
overflow in the `(x >= *n || *n - x <= borrow)` branch, ie
`borrow + x - (mpz_dbl_dig_t)*n` overflows the borrow variable. In such
cases the subsequent right-shift of borrow would not bring in the overflow
bit, leading to an error in the result. An example division that had
overflow when MPZ_DIG_SIZE = 16 is `(2 ** 48 - 1) ** 2 // (2 ** 48 - 1)`.
This is fixed in this commit by simplifying the code and handling the low
digits of borrow first, and then the upper bits (to shift down) separately.
There is no longer a distinction between `DIG_SIZE < MPZ_DBL_DIG_SIZE / 2`
and `DIG_SIZE == MPZ_DBL_DIG_SIZE / 2`.
This commit also simplifies the second part of the calculation so that
borrow does not need to be negated (instead the code just works knowing
that borrow is negative and using + instead of - in calculations involving
borrow).
Fixes#6777.
Signed-off-by: Damien George <damien@micropython.org>
Default to just calling python since that is most commonly available: the
official installer or zipfiles from python.org, anaconda, nupkg all result
in python being available but not python3. In other words: the default
used so far is wrong. Note that os.name is 'posix' when running the python
version which comes with Cygwin or MSys2 so they are not affected by this.
However of all possible ways to get Python on Windows, only Cygwin provides
no python command so update the default way for running tests in the
README.
Some devices have lower precision than 1ms for time_ns() (eg PYBv1.x has
3.9ms resolution of the RTC) so make the test more lenient for them.
Signed-off-by: Damien George <damien@micropython.org>
This returns a reference to the globals dict associated with the function,
ie the global scope that the function was defined in. This attribute is
read-only but the dict itself is modifiable, per CPython behaviour.
Signed-off-by: Damien George <damien@micropython.org>
The superblock for littlefs is in block 0 and 1, but block 0 may be erased
or partially written, so block 1 must be checked if block 0 does not have a
valid littlefs superblock in it.
Prior to this commit, the mount of a block device which auto-detected the
filysystem type would fail for littlefs if block 0 did not contain a valid
superblock. That is now fixed.
Signed-off-by: Damien George <damien@micropython.org>
According to documentation time() has a precision of at least 1 second.
This test runs for 2.5 seconds and calls all utime functions every 100ms.
Then it checks if they returned enough different results. All functions
with sub-second precision will return ~25 results. This test passes with
15 results or more. Functions that do not exist are skipped silently.
The original logic of reducing a full path to a relative one assumes
"tests/misc" is in the filename which is limited in usage: it never works
for CPython on Windows since that will use a backslash as path separator,
and also won't work when the filename is a path not relative to the tests
directory which happens for example in the common case of running
"./run-tests -d misc".
Fix all cases by printing only the bare filename, which requires them all
to start with sys_settrace_ hence the renaming.
Mounting a bdev directly tries to auto-detect the filesystem and if none is
found an OSError(19,) should be raised.
The fourth parameter of readblocks() and writeblocks() must be optional to
support ports with MICROPY_VFS_FAT=1. Otherwise mounting a bdev may fail
because looking for a FATFS will call readblocks() with only 3 parameters.
Two issues are tackled:
1. The calculation of the correct length to print is fixed to treat the
precision as a maximum length instead as the exact length.
This is done for both qstr (%q) and for regular str (%s).
2. Fix the incorrect use of mp_printf("%.*s") to mp_print_strn().
Because of the fix of above issue, some testcases that would print
an embedded null-byte (^@ in test-output) would now fail.
The bug here is that "%s" was used to print null-bytes. Instead,
mp_print_strn is used to make sure all bytes are outputted and the
exact length is respected.
Test-cases are added for both %s and %q with a combination of precision
and padding specifiers.
This commit switches the roles of the helper task from a cancellation task
to a runner task, to get the correct semantics for cancellation of
wait_for.
Some uasyncio tests are now disabled for the native emitter due to issues
with native code generation of generators and yield-from.
Fixes#5797.
Signed-off-by: Damien George <damien@micropython.org>
This is added because task.coro==None is no longer the way to detect if a
task is finished. Providing a (CPython compatible) function for this
allows the implementation to be abstracted away.
Signed-off-by: Damien George <damien@micropython.org>
When a tasks raises an exception which is uncaught, and no other task
await's on that task, then an error message is printed (or a user function
called) via a call to Loop.call_exception_handler. In CPython this call is
made when the Task object is freed (eg via reference counting) because it's
at that point that it is known that the exception that was raised will
never be handled.
MicroPython does not have reference counting and the current behaviour is
to deal with uncaught exceptions as early as possible, ie as soon as they
terminate the task. But this can be undesirable because in certain cases
a task can start and raise an exception immediately (before any await is
executed in that task's coro) and before any other task gets a chance to
await on it to catch the exception.
This commit changes the behaviour so that tasks which end due to an
uncaught exception are scheduled one more time for execution, and if they
are not await'ed on by the next scheduling loop, then the exception handler
is called (eg the exception is printed out).
Signed-off-by: Damien George <damien@micropython.org>
This test currently passes on Unix/PYBD, but fails on WB55 because it lacks
synchronisation of the internal flash.
Signed-off-by: Jim Mussared <jim.mussared@gmail.com>
Use the same `wait_for_event` in all tests that doesn't hold a reference to
the event data tuple and handles repeat events.
Also fix a few misc reliability issues around timeouts and sequencing.
Signed-off-by: Jim Mussared <jim.mussared@gmail.com>
Prior to this change machine.mem32['foo'] (or using any other non-integer
subscript) could result in a fault due to 'foo' being interpreted as an
integer. And when writing code it's hard to tell if the fault is due to a
bad subscript type, or an integer subscript that specifies an invalid
memory address.
The type of the object used in the subscript is now tested to be an
integer by using mp_obj_get_int_truncated instead of
mp_obj_int_get_truncated. The performance hit of this change is minimal,
and machine.memX objects are more for convenience than performance (there
are many other ways to read/write memory in a faster way),
Fixes issue #6588.
Add working example code to provide a starting point for users with files
that they can just copy, and include the modules in the coverage test to
verify the complete user C module build functionality. The cexample module
uses the code originally found in cmodules.rst, which has been updated to
reflect this and partially rewritten with more complete information.
Support building .cpp files and linking them into the micropython
executable in a way similar to how it is done for .c files. The main
incentive here is to enable user C modules to use C++ files (which are put
in SRC_MOD_CXX by py.mk) since the core itself does not utilize C++.
However, to verify build functionality a unix overage test is added. The
esp32 port already has CXXFLAGS so just add the user modules' flags to it.
For the unix port use a copy of the CFLAGS but strip the ones which are not
usable for C++.
If a port provides MICROPY_PY_URANDOM_SEED_INIT_FUNC as a source of
randomness then this will be used when urandom.seed() is called without
an argument (or with None as the argument) to seed the pRNG.
Other related changes in this commit:
- mod_urandom___init__ is changed to call seed() without arguments, instead
of explicitly passing in the result of MICROPY_PY_URANDOM_SEED_INIT_FUNC.
- mod_urandom___init__ will only ever seed the pRNG once (before it could
seed it again if imported by, eg, random and then urandom).
- The Yasmarang state is moved to the BSS for builds where the state is
guaranteed to be initialised on import of the (u)random module.
Signed-off-by: Damien George <damien@micropython.org>
When threading is enabled without the GIL then there can be races between
the threads accessing the globals dict. Avoid this issue by making sure
all globals variables are allocated before starting the threads.
Signed-off-by: Damien George <damien@micropython.org>