Instead of assuming that the method is a bytecode object, and only
supporting load of __name__, make the operation generic by delegating the
load to the method object itself. Saves a bit of code size and fixes the
case of attempting to load __name__ on a native method, see issue #4028.
This ensures that implicit variables are only converted to implicit
closed-over variables (nonlocals) at the very end of the function scope.
If variables are closed-over when first used (read from, as was done prior
to this commit) then this can be incorrect because the variable may be
assigned to later on in the function which means they are just a plain
local, not closed over.
Fixes issue #4272.
Part of this test was trying to test some functionality of __getattribute__
but this method name was misspelt so it wasn't doing anything useful.
Fixing the typo in this name makes the test fail because MicroPython
doesn't support user defined __getattribute__ methods. So this part of the
test is removed. The remaining tests are modified slightly to make it
clearer what they are testing.
This makes these special methods have the same calling behaviour as other
methods in a class instance (mp_convert_member_lookup() is already called
by mp_obj_class_lookup()).
mp_make_raise_obj must be used to convert a possible exception type to an
instance object, otherwise the VM may raise a non-exception object.
An existing test is adjusted to test this case, with the original test
already moved to generator_throw.py.
This commit implements PEP479 which disallows raising StopIteration inside
a generator to signal that it should be finished. Instead, the generator
should simply return when it is complete.
See https://www.python.org/dev/peps/pep-0479/ for details.
If bytearray is constructed from str, a second argument of encoding is
required (in CPython), and third arg of Unicode error handling is allowed,
e.g.:
bytearray("str", "utf-8", "strict")
This is similar to bytes:
bytes("str", "utf-8", "strict")
This patch just allows to pass 2nd/3rd arguments to bytearray, but
doesn't try to validate them to not impact code size. (This is also
similar to how bytes constructor is handled, though it does a bit
more validation, e.g. check that in case of str arg, encoding argument
is passed.)
The native emitter keeps the current exception in a slot in its C stack
(instead of on its Python value stack), so when it catches an exception it
must explicitly clear that slot so the same exception is not reraised later
on.
Back in 8047340d7532ec32bc9f2d603bffc0bc9544297f basic support was added in
the VM to handle return statements within a finally block. But it didn't
cover all cases, in particular when some finally's were active and others
inactive when the "return" was executed.
This patch adds further support for return-within-finally by correctly
managing the currently_in_except_block flag, and should fix all cases. The
main point is that finally handlers remain on the exception stack even if
they are active (currently being executed), and the unwind return code
should only execute those finally's which are inactive.
New tests are added for the cases which now pass.
PEP479 (see https://www.python.org/dev/peps/pep-0479/) prohibited raising
StopIteration from within a generator (it is turned into a RuntimeError).
This behaviour was introduced in Python 3.5 and in 3.7 was made compulsory.
Until uPy implements PEP479, this patch adds .py.exp files for the relevant
tests so they can be run under Python 3.7.
In Python 3.7 the behaviour of repr() of an exception with one argument
changed: it no longer prints a trailing comma in the argument list. See
https://bugs.python.org/issue30399
This patch modifies tests that rely on this behaviour to not rely on it.
And the python34.py test is updated to include a test for this behaviour
with a .exp file.
With the recent change b488a4a8480533a6a3c9468c2f8bd359c94d4d02, a
generating function now has the same layout in memory as a normal bytecode
function, and so can reuse the latter's attribute accessor code to
implement __name__.
Before this patch the context manager's __aexit__() method would not be
executed if a return/break/continue statement was used to exit an async
with block. async with now has the same semantics as normal with.
The fix here applies purely to the compiler, and does not modify the
runtime at all. It might (eventually) be better to define new bytecode(s)
to handle async with (and maybe other async constructs) in a cleaner, more
efficient way.
One minor drawback with addressing this issue purely in the compiler is
that it wasn't possible to get 100% CPython semantics. The thing that is
different here to CPython is that the __aexit__ method is not looked up in
the context manager until it is needed, which is after the body of the
async with statement has executed. So if a context manager doesn't have
__aexit__ then CPython raises an exception before the async with is
executed, whereas uPy will raise it after it is executed. Note that
__aenter__ is looked up at the beginning in uPy because it needs to be
called straightaway, so if the context manager isn't a context manager then
it'll still raise an exception at the same location as CPython. The only
difference is if the context manager has the __aenter__ method but not the
__aexit__ method, then in that case uPy has different behaviour. But this
is a very minor, and acceptable, difference.
This patch is a code optimisation, trading text bytes for speed. On
pyboard it's an increase of 0.06% in code size for a gain (in pystone
performance) of roughly 6.5%.
The patch optimises load/store/delete of attributes in user defined classes
by not looking up special accessors (@property, __get__, __delete__,
__set__, __setattr__ and __getattr_) if they are guaranteed not to exist in
the class.
Currently, if you do my_obj.foo() then the runtime has to do a few checks
to see if foo is a property or has __get__, and if so delegate the call.
And for stores things like my_obj.foo = 1 has to first check if foo is a
property or has __set__ defined on it.
Doing all those checks each and every time the attribute is accessed has a
performance penalty. This patch eliminates all those checks for cases when
it's guaranteed that the checks will always fail, ie no attributes are
properties nor have any special accessor methods defined on them.
To make this guarantee it checks all attributes of a user-defined class
when it is first created. If any of the attributes of the user class are
properties or have special accessors, or any of the base classes of the
user class have them, then it sets a flag in the class to indicate that
special accessors must be checked for. Then in the load/store/delete code
it checks this flag to see if it can take the shortcut and optimise the
lookup.
It's an optimisation that's pretty widely applicable because it improves
lookup performance for all methods of user defined classes, and stores of
attributes, at least for those that don't have special accessors. And, it
allows to enable descriptors with minimal additional runtime overhead if
they are not used for a particular user class.
There is one restriction on dynamic class creation that has been introduced
by this patch: a user-defined class cannot go from zero special accessors
to one special accessor (or more) after that class has been subclassed. If
the script attempts this an AttributeError is raised (see addition to
tests/misc/non_compliant.py for an example of this case).
The cost in code space bytes for the optimisation in this patch is:
unix x64: +528
unix nanbox: +508
stm32: +192
cc3200: +200
esp8266: +332
esp32: +244
Performance tests that were done:
- on unix x86-64, pystone improved by about 5%
- on pyboard, pystone improved by about 6.5%, from 1683 up to 1794
- on pyboard, bm_chaos (from CPython benchmark suite) improved by about 5%
- on esp32, pystone improved by about 30% (but there are caching effects)
- on esp32, bm_chaos improved by about 11%
The string "Q+?" is special in that it hashes to zero with the djb2
algorithm (among other strings), and a zero hash should be incremented to a
hash of 1.
The case of a return statement in the try suite of a try-except statement
was previously only tested by builtin_compile.py, and only then in the part
of this test which checked for the existence of the compile builtin. So
this patch adds an explicit unit test for this case.