The size of the event ringbuf was previously fixed to compile-time config
value, but it's necessary to sometimes increase this for applications that
have large characteristic buffers to read, or many events at once.
With this commit the size can be set via BLE.config(rxbuf=512), for
example. This also resizes the internal event data buffer which sets the
maximum size of incoming data passed to the event handler.
This allows the user to explicitly select the behaviour of the write to the
remote peripheral. This is needed for peripherals that have
characteristics with WRITE_NO_RESPONSE set (instead of normal WRITE). The
function's signature is now:
BLE.gattc_write(conn_handle, value_handle, data, mode=0)
mode=0 means write without response, while mode=1 means write with
response. The latter was the original behaviour so this commit is a change
in behaviour of this method, and one should specify 1 as the 4th argument
to get back the old behaviour.
In the future there could be more modes supported, such as long writes.
The address, adv payload and uuid fields of the event are pre-allocated by
modbluetooth, and reused in the IRQ handler. Simplify this and move all
storage into the `mp_obj_bluetooth_ble_t` instance.
This now allows users to hold on to a reference to these instances without
crashes, although they may be overwritten by future events. If they want
to hold onto the values longer term they need to copy them.
Behaviour was changed from stack to queue in
8977c7eb581f5d06500edb1ea29aea5cbda04f28, and this updates variable names
to match. Also updates other references (docs, error messages).
This allows to efficiently send to an I2C slave data that is made up of
more than one buffer. Instead of needing to allocate temporary memory to
combine buffers together this new method allows to pass in a tuple or list
of buffers. The name is based on the POSIX function writev() which has
similar intentions and signature.
The reasons for taking this approach (compared to having an interface with
separate start/write/stop methods) are:
- It's a backwards compatible extension.
- It's convenient for the user.
- It's efficient because there is only one Python call, then the C code can
do everything in one go.
- It's efficient on the I2C bus because the implementation can do
everything in one go without pauses between blocks of bytes.
- It should be possible to implement this extension in all ports, for
hardware and software I2C.
Further discussion is found in issue #3482, PR #4020 and PR #4763.
It's more common to need non-blocking behaviour when reading from a UART,
rather than having a large timeout like 1000ms (the original behaviour).
With a large timeout it's 1) likely that the function will read forever if
characters keep trickling it; or 2) the function will unnecessarily wait
when characters come sporadically, eg at a REPL prompt.
This is only correct for the extmod/uos_dupterm.c implementation however,
as e.g cc3200 implementation does the mp_load_method() itself, and anyway
requires `read` instead of `readinto`.
The machine.sleep() function can be misleading because it clashes with
time.sleep() which has quite different semantics. So change it to
machine.lightsleep() which shows that it is closer in behaviour to
machine.deepsleep().
Also, add an optional argument to these two sleep functions to specify a
maximum time to sleep for. This is a common operation and underlying
hardware usually has a special way of performing this operation.
The existing machine.sleep() function will remain for backwards
compatibility purposes, and it can simply be an alias for
machine.lightsleep() without arguments. The behaviour will be the same.