Previous to this patch, a big-int, float or imag constant was interned
(made into a qstr) and then parsed at runtime to create an object each
time it was needed. This is wasteful in RAM and not efficient. Now,
these constants are parsed straight away in the parser and turned into
objects. This allows constants with large numbers of digits (so
addresses issue #1103) and takes us a step closer to #722.
Native code has GC-heap pointers in it so it must be scanned. But on
unix port memory for native functions is mmap'd, and so it must have
explicit code to scan it for root pointers.
This patch makes the MICROPY_PY_BUILTINS_SLICE compile-time option
fully disable the builtin slice operation (when set to 0). This
includes removing the slice sytanx from the grammar. Now, enabling
slice costs 4228 bytes on unix x64, and 1816 bytes on stmhal.
This patch makes MICROPY_PY_BUILTINS_SET compile-time option fully
disable the builtin set object (when set to 0). This includes removing
set constructor/comprehension from the grammar, the compiler and the
emitters. Now, enabling set costs 8168 bytes on unix x64, and 3576
bytes on stmhal.
Viper can now do the following:
def store(p:ptr8, c:int):
p[0] = c
This does a store of c to the memory pointed to by p using a machine
instructions inline in the code.
Eventually, viper wants to be able to use raw pointers to strings and
arrays for efficient access. But for now, let's just load strings as a
Python object so they can be used as normal. This will anyway be
compatible with eventual intended viper behaviour.
Addresses issue #857.
Native emitter can now compile try/except blocks using nlr_push/nlr_pop.
It probably only works for 1 level of exception handling. It doesn't
work on Thumb (only x64).
Native emitter can also handle some additional op codes.
With this patch, 198 tests now pass using "-X emit=native" option to
micropython.
Needed to pop the iterator object when breaking out of a for loop. Need
also to be careful to unwind exception handler before popping iterator.
Addresses issue #635.
This patch simplifies the glue between native emitter and runtime,
and handles viper code like inline assember: return values are
converted to Python objects.
Fixes issue #531.
Blanket wide to all .c and .h files. Some files originating from ST are
difficult to deal with (license wise) so it was left out of those.
Also merged modpyb.h, modos.h, modstm.h and modtime.h in stmhal/.
3 emitter functions are needed only for emitcpy, and so we can #if them
out when compiling with emitcpy support.
Also remove unused SETUP_LOOP bytecode.
Closed over variables are now passed on the stack, instead of creating a
tuple and passing that. This way memory for the closed over variables
can be allocated within the closure object itself. See issue #510 for
background.
Attempt to address issue #386. unique_code_id's have been removed and
replaced with a pointer to the "raw code" information. This pointer is
stored in the actual byte code (aligned, so the GC can trace it), so
that raw code (ie byte code, native code and inline assembler) is kept
only for as long as it is needed. In memory it's now like a tree: the
outer module's byte code points directly to its children's raw code. So
when the outer code gets freed, if there are no remaining functions that
need the raw code, then the children's code gets freed as well.
This is pretty much like CPython does it, except that CPython stores
indexes in the byte code rather than machine pointers. These indices
index the per-function constant table in order to find the relevant
code.
Improved the Thumb assembler back end. Added many more Thumb
instructions to the inline assembler. Improved parsing of assembler
instructions and arguments. Assembler functions can now be passed the
address of any object that supports the buffer protocol (to get the
address of the buffer). Added an example of how to sum numbers from
an array in assembler.
Very little has changed. In Python 3.4 they removed the opcode
STORE_LOCALS, but in Micro Python we only ever used this for CPython
compatibility, so it was a trivial thing to remove. It also allowed to
clean up some dead code (eg the 0xdeadbeef in class construction), and
now class builders use 1 less stack word.
Python 3.4.0 introduced the LOAD_CLASSDEREF opcode, which I have not
yet understood. Still, all tests (apart from bytecode test) still pass.
Bytecode tests needs some more attention, but they are not that
important anymore.
Mostly just a global search and replace. Except rt_is_true which
becomes mp_obj_is_true.
Still would like to tidy up some of the names, but this will do for now.
LOAD_METHOD bug was: emitbc did not correctly calculate the amount of
stack usage for a LOAD_METHOD operation.
small int bug was: int was being used to pass small ints, when it should
have been machine_int_t.
Change state layout in VM so the stack starts at state[0] and grows
upwards. Locals are at the top end of the state and number downwards.
This cleans up a lot of the interface connecting the VM to C: now all
functions that take an array of Micro Python objects are in order (ie no
longer in reverse).
Also clean up C API with keyword arguments (call_n and call_n_kw
replaced with single call method that takes keyword arguments). And now
make_new takes keyword arguments.
emitnative.c has not yet been changed to comply with the new order of
stack layout.
With MICROPY_EMIT_X64 and MICROPY_EMIT_THUMB disabled, the respective
emitters and assemblers will not be included in the code. This can
significantly reduce binary size for unix version.