Allows for simpler, smaller and faster code at run time when selecting the
boards frequency, and allows more customisation opportunities for the PLL
values depending on the target MCU.
By default the firmware is built with single-precision floating point.
To build a particular board using double precision instead, put the
following line in the mpconfigboard.mk file:
FLOAT_IMPL = double
This follows the pattern of how all other headers are now included, and
makes it explicit where the header file comes from. This patch also
removes -I options from Makefile's that specify the mp-readline/timeutils/
netutils directories, which are no longer needed.
The C nearbyint function has exactly the semantics that Python's round()
requires, whereas C's round() requires extra steps to handle rounding of
numbers half way between integers. So using nearbyint reduces code size
and potentially eliminates any source of errors in the handling of half-way
numbers.
Also, bare-metal implementations of nearbyint can be more efficient than
round, so further code size is saved (and efficiency improved).
nearbyint is provided in the C99 standard so it should be available on all
supported platforms.
The -ansi flag is used for C dialect selection and it is equivalent to -std=c90.
Because it goes right before -std=gnu99 it is ignored as for conflicting flags
GCC always uses the last one.
The aapcs-linux ABI is not required, instead the default aapcs ABI is
enough. And using the default ABI means that the provided libgcc will now
link with the firmware without warnings about variable vs fixed enums.
Although the binary size increases by about 1k, RAM usage is slightly
decreased. And libgcc may prove useful in the future for things like
long-long division.
This patch brings the _thread module to stmhal/pyboard. There is a very
simple round-robin thread scheduler, which is disabled if there is only
one thread (for efficiency when threading is not used).
The scheduler currently switches threads at a rate of 250Hz using the
systick timer and the pend-SV interrupt.
The GIL is disabled so one must be careful to use lock objects to prevent
concurrent access of objects.
The threading is disabled by default, one can enabled it with the config
option MICROPY_PY_THREAD to test it out.
This patch makes the following configuration changes:
- MICROPY_FSUSERMOUNT is disabled, removing old mounting infrastructure
- MICROPY_VFS is enabled, giving new VFS sub-system
- MICROPY_VFS_FAT is enabled, giving uos.VfsFat type
- MICROPY_FATFS_OO is enabled, to use new ooFatFs lib, R0.12b
User facing API should be almost unchanged. Most notable changes are
removal of os.mkfs (use os.VfsFat.mkfs instead) and pyb.mount doesn't
allow unmounting by passing None as the device.
To use this feature a port should define MICROPY_HW_SPIFLASH_SIZE_BITS
along with x_CS, x_SCK, x_MOSI, x_MISO (x=MICROPY_HW_SPIFLASH). This will
then use external SPI flash on those pins instead of the internal flash.
The SPI is done using the software implementation. There is currently only
support for standard SPI (ie not dual or quad mode).
stmhal will now be built by default with frozen bytecode from scripts
stored in the stmhal/modules/ directory. This can be disabled or
changed to another directory by overridding the make variable
FROZEN_MPY_DIR.
This allows one to construct an I2C object using ids that are specific
to the stmhal port, eg machine.I2C('X'). Right now the implementation
of I2C uses software I2C but the idea is to just change the C-level I2C
protocol functions to hardware implementations later on.
If a port defines MICROPY_READER_POSIX or MICROPY_READER_FATFS then
lexer.c now provides an implementation of mp_lexer_new_from_file using
the mp_reader_new_file function.
Now, to use frozen bytecode all a port needs to do is define
FROZEN_MPY_DIR to the directory containing the .py files to freeze, and
define MICROPY_MODULE_FROZEN_MPY and MICROPY_QSTR_EXTRA_POOL.
In particular, this makes the L4 .isr_vector section 16K in size so it's
the same as the F4/F7 MCUs. The patch also moves the L4 filesystem to
the end of flash, which allows for 512K filesystem on the 1Mb devices
like the STM32L476DISC.
This new config option allows to control whether MicroPython uses its own
internal printf or not (if not, an external one should be linked in).
Accompanying this new option is the inclusion of lib/utils/printf.c in the
core list of source files, so that ports no longer need to include it
themselves.
This extra forward slash for the starting-point directory is unnecessary
and leads to additional slashes on Max OS X which mean that the frozen
files cannot be imported.
Fixes#2374.
- add template rule that converts a specified source file into a qstring file
- add special rule for generating a central header that contains all
extracted/autogenerated strings - defined by QSTR_DEFS_COLLECTED
variable. Each platform appends a list of sources that may contain
qstrings into a new build variable: SRC_QSTR. Any autogenerated
prerequisities are should be appened to SRC_QSTR_AUTO_DEPS variable.
- remove most qstrings from py/qstrdefs, keep only qstrings that
contain special characters - these cannot be easily detected in the
sources without additional annotations
- remove most manual qstrdefs, use qstrdef autogen for: py, cc3200,
stmhal, teensy, unix, windows, pic16bit:
- remove all micropython generic qstrdefs except for the special strings that contain special characters (e.g. /,+,<,> etc.)
- remove all port specific qstrdefs except for special strings
- append sources for qstr generation in platform makefiles (SRC_QSTR)
The config variable MICROPY_MODULE_FROZEN is now made of two separate
parts: MICROPY_MODULE_FROZEN_STR and MICROPY_MODULE_FROZEN_MPY. This
allows to have none, either or both of frozen strings and frozen mpy
files (aka frozen bytecode).