The STM32 F7 and L4 boards use significantly different code to the F4
boards so it's important to test them with CI. To keep CI build times
within a reasonable limit the STM32F4DISC board is no longer built, it's
anyway very similar to the standard F4 build for PYBv1.0.
This is actually long overdue: the README in the windows directory has been
updated once to indicate mingw32 is abandoned and not ok to use with uPy,
but we forgot travis builds were still using it.
As a bonus the travis build will succeed again since moduerrno.c now compiles.
(see https://github.com/micropython/micropython/pull/2399)
There appears to be issue signature problem with the PPA package we use,
so workaround it this way for now. Warning: with broken signature, there's
always a possibility that PPA was hacked and ships trojaned binaries.
For some reason, Travis now has Google Chrome PPA included in the builder
image, that lacks i386 arch, that leads to apt-get update error. So, ignore
it (this is not ideal as may lead to actual repo update failures to be missed,
leading to installation of old package, leading to weird errors; let's keep
that in mind).
unix-cpy was originally written to get semantic equivalent with CPython
without writing functional tests. When writing the initial
implementation of uPy it was a long way between lexer and functional
tests, so the half-way test was to make sure that the bytecode was
correct. The idea was that if the uPy bytecode matched CPython 1-1 then
uPy would be proper Python if the bytecodes acted correctly. And having
matching bytecode meant that it was less likely to miss some deep
subtlety in the Python semantics that would require an architectural
change later on.
But that is all history and it no longer makes sense to retain the
ability to output CPython bytecode, because:
1. It outputs CPython 3.3 compatible bytecode. CPython's bytecode
changes from version to version, and seems to have changed quite a bit
in 3.5. There's no point in changing the bytecode output to match
CPython anymore.
2. uPy and CPy do different optimisations to the bytecode which makes it
harder to match.
3. The bytecode tests are not run. They were never part of Travis and
are not run locally anymore.
4. The EMIT_CPYTHON option needs a lot of extra source code which adds
heaps of noise, especially in compile.c.
5. Now that there is an extensive test suite (which tests functionality)
there is no need to match the bytecode. Some very subtle behaviour is
tested with the test suite and passing these tests is a much better
way to stay Python-language compliant, rather than trying to match
CPy bytecode.
The function and corresponding command-line option are only enabled for
the coverage build. They are used to exercise uPy features that can't
be properly tested by Python scripts.
The port currently implements support for GPIO, RTC, ExtInt and the WiFi
subsystem. A small file system is available in the serial flash. A
bootloader which makes OTA updates possible, is also part of this initial
implementation.
Replaces RUN_TEST=1 definition; now "make test" in qemu-arm directory
will run tests/basics/ and check that they all succeed.
This patch also enables the test on Travis CI.