This adds a rule to cover all ports/**/*.[ch] file to the code formatting
list. Explicit exclusions are also added for code in ports/ which is third
party, or which requires a lot of reformatting.
Signed-off-by: Damien George <damien@micropython.org>
To keep the separate parts of the code that use these values in sync. And
make it easier to add new object types.
Signed-off-by: Damien George <damien@micropython.org>
Specifying the option `--unsafe-links` (or `-l`) to `mpremote mount` will
allow symlinks to be followed in the local directory that point outside of
the base directory path.
For the unsafe case the `path_check()` method of `PyboardCommand` still
checks for a common path but without expanding symlinks. While this check
is currently redundant, it makes the purpose of the method clearer for
possible future uses or extensions.
With the existing code problems can occur with remounting, the "if t -
t_last_activity > QUIET_TIMEOUT:" check can be triggered early before the
REPL string comes through, meaning that the remount doesn't happen.
On certain boards the "MPY: soft reboot" line comes through immediately
(getting the routine past initial timeout) but then there's a slightly
longer delay while the board restarts before it prints out the startup
header and the REPL prompt.
This commit adds some extra pattern monitoring during the timeout loop to
track the state if a soft restart is actually started.
These jumps are always forwards, and it's more efficient in the VM to
decode an unsigned argument. These opcodes are already optimised versions
of the sequence "dup-top pop-jump-if-x pop" so it doesn't hurt generality
to optimise them further.
Signed-off-by: Damien George <damien@micropython.org>
This commit introduces changes:
- All jump opcodes are changed to have variable length arguments, of either
1 or 2 bytes (previously they were fixed at 2 bytes). In most cases only
1 byte is needed to encode the short jump offset, saving bytecode size.
- The bytecode emitter now selects 1 byte jump arguments when the jump
offset is guaranteed to fit in 1 byte. This is achieved by checking if
the code size changed during the last pass and, if it did (if it shrank),
then requesting that the compiler make another pass to get the correct
offsets of the now-smaller code. This can continue multiple times until
the code stabilises. The code can only ever shrink so this iteration is
guaranteed to complete. In most cases no extra passes are needed, the
original 4 passes are enough to get it right by the 4th pass (because the
2nd pass computes roughly the correct labels and the 3rd pass computes
the correct size for the jump argument).
This change to the jump opcode encoding reduces .mpy files and RAM usage
(when bytecode is in RAM) by about 2% on average.
The performance of the VM is not impacted, at least within measurment of
the performance benchmark suite.
Code size is reduced for builds that include a decent amount of frozen
bytecode. ARM Cortex-M builds without any frozen code increase by about
350 bytes.
Signed-off-by: Damien George <damien@micropython.org>
Since cpydiff is code used as documentation, there are cases where we may
want to use Black's `fmt: on/off/skip` comments to avoid automatic
formatting. However, we don't want these comments to be distracting in the
generated documentation.
This rewrites the code to omit these comments when generating the docs.
Signed-off-by: David Lechner <david@pybricks.com>
Tested on PYBV10 and PYBD_SF6, with MBOOT_FSLOAD enabled and programming
new firmware from a .dfu.gz file stored on the SD card.
Signed-off-by: Damien George <damien@micropython.org>
That caused the compile of frozen_content.c to fail if characters like
backslash were in a short string. Thanks to @hippy for identifying the
spot to change.
This makes the auto soft-reset behaviour of mpremote more logical, and now
configurable via these new commands.
Signed-off-by: Damien George <damien@micropython.org>
Background: .mpy files are precompiled .py files, built using mpy-cross,
that contain compiled bytecode functions (and can also contain machine
code). The benefit of using an .mpy file over a .py file is that they are
faster to import and take less memory when importing. They are also
smaller on disk.
But the real benefit of .mpy files comes when they are frozen into the
firmware. This is done by loading the .mpy file during compilation of the
firmware and turning it into a set of big C data structures (the job of
mpy-tool.py), which are then compiled and downloaded into the ROM of a
device. These C data structures can be executed in-place, ie directly from
ROM. This makes importing even faster because there is very little to do,
and also means such frozen modules take up much less RAM (because their
bytecode stays in ROM).
The downside of frozen code is that it requires recompiling and reflashing
the entire firmware. This can be a big barrier to entry, slows down
development time, and makes it harder to do OTA updates of frozen code
(because the whole firmware must be updated).
This commit attempts to solve this problem by providing a solution that
sits between loading .mpy files into RAM and freezing them into the
firmware. The .mpy file format has been reworked so that it consists of
data and bytecode which is mostly static and ready to run in-place. If
these new .mpy files are located in flash/ROM which is memory addressable,
the .mpy file can be executed (mostly) in-place.
With this approach there is still a small amount of unpacking and linking
of the .mpy file that needs to be done when it's imported, but it's still
much better than loading an .mpy from disk into RAM (although not as good
as freezing .mpy files into the firmware).
The main trick to make static .mpy files is to adjust the bytecode so any
qstrs that it references now go through a lookup table to convert from
local qstr number in the module to global qstr number in the firmware.
That means the bytecode does not need linking/rewriting of qstrs when it's
loaded. Instead only a small qstr table needs to be built (and put in RAM)
at import time. This means the bytecode itself is static/constant and can
be used directly if it's in addressable memory. Also the qstr string data
in the .mpy file, and some constant object data, can be used directly.
Note that the qstr table is global to the module (ie not per function).
In more detail, in the VM what used to be (schematically):
qst = DECODE_QSTR_VALUE;
is now (schematically):
idx = DECODE_QSTR_INDEX;
qst = qstr_table[idx];
That allows the bytecode to be fixed at compile time and not need
relinking/rewriting of the qstr values. Only qstr_table needs to be linked
when the .mpy is loaded.
Incidentally, this helps to reduce the size of bytecode because what used
to be 2-byte qstr values in the bytecode are now (mostly) 1-byte indices.
If the module uses the same qstr more than two times then the bytecode is
smaller than before.
The following changes are measured for this commit compared to the
previous (the baseline):
- average 7%-9% reduction in size of .mpy files
- frozen code size is reduced by about 5%-7%
- importing .py files uses about 5% less RAM in total
- importing .mpy files uses about 4% less RAM in total
- importing .py and .mpy files takes about the same time as before
The qstr indirection in the bytecode has only a small impact on VM
performance. For stm32 on PYBv1.0 the performance change of this commit
is:
diff of scores (higher is better)
N=100 M=100 baseline -> this-commit diff diff% (error%)
bm_chaos.py 371.07 -> 357.39 : -13.68 = -3.687% (+/-0.02%)
bm_fannkuch.py 78.72 -> 77.49 : -1.23 = -1.563% (+/-0.01%)
bm_fft.py 2591.73 -> 2539.28 : -52.45 = -2.024% (+/-0.00%)
bm_float.py 6034.93 -> 5908.30 : -126.63 = -2.098% (+/-0.01%)
bm_hexiom.py 48.96 -> 47.93 : -1.03 = -2.104% (+/-0.00%)
bm_nqueens.py 4510.63 -> 4459.94 : -50.69 = -1.124% (+/-0.00%)
bm_pidigits.py 650.28 -> 644.96 : -5.32 = -0.818% (+/-0.23%)
core_import_mpy_multi.py 564.77 -> 581.49 : +16.72 = +2.960% (+/-0.01%)
core_import_mpy_single.py 68.67 -> 67.16 : -1.51 = -2.199% (+/-0.01%)
core_qstr.py 64.16 -> 64.12 : -0.04 = -0.062% (+/-0.00%)
core_yield_from.py 362.58 -> 354.50 : -8.08 = -2.228% (+/-0.00%)
misc_aes.py 429.69 -> 405.59 : -24.10 = -5.609% (+/-0.01%)
misc_mandel.py 3485.13 -> 3416.51 : -68.62 = -1.969% (+/-0.00%)
misc_pystone.py 2496.53 -> 2405.56 : -90.97 = -3.644% (+/-0.01%)
misc_raytrace.py 381.47 -> 374.01 : -7.46 = -1.956% (+/-0.01%)
viper_call0.py 576.73 -> 572.49 : -4.24 = -0.735% (+/-0.04%)
viper_call1a.py 550.37 -> 546.21 : -4.16 = -0.756% (+/-0.09%)
viper_call1b.py 438.23 -> 435.68 : -2.55 = -0.582% (+/-0.06%)
viper_call1c.py 442.84 -> 440.04 : -2.80 = -0.632% (+/-0.08%)
viper_call2a.py 536.31 -> 532.35 : -3.96 = -0.738% (+/-0.06%)
viper_call2b.py 382.34 -> 377.07 : -5.27 = -1.378% (+/-0.03%)
And for unix on x64:
diff of scores (higher is better)
N=2000 M=2000 baseline -> this-commit diff diff% (error%)
bm_chaos.py 13594.20 -> 13073.84 : -520.36 = -3.828% (+/-5.44%)
bm_fannkuch.py 60.63 -> 59.58 : -1.05 = -1.732% (+/-3.01%)
bm_fft.py 112009.15 -> 111603.32 : -405.83 = -0.362% (+/-4.03%)
bm_float.py 246202.55 -> 247923.81 : +1721.26 = +0.699% (+/-2.79%)
bm_hexiom.py 615.65 -> 617.21 : +1.56 = +0.253% (+/-1.64%)
bm_nqueens.py 215807.95 -> 215600.96 : -206.99 = -0.096% (+/-3.52%)
bm_pidigits.py 8246.74 -> 8422.82 : +176.08 = +2.135% (+/-3.64%)
misc_aes.py 16133.00 -> 16452.74 : +319.74 = +1.982% (+/-1.50%)
misc_mandel.py 128146.69 -> 130796.43 : +2649.74 = +2.068% (+/-3.18%)
misc_pystone.py 83811.49 -> 83124.85 : -686.64 = -0.819% (+/-1.03%)
misc_raytrace.py 21688.02 -> 21385.10 : -302.92 = -1.397% (+/-3.20%)
The code size change is (firmware with a lot of frozen code benefits the
most):
bare-arm: +396 +0.697%
minimal x86: +1595 +0.979% [incl +32(data)]
unix x64: +2408 +0.470% [incl +800(data)]
unix nanbox: +1396 +0.309% [incl -96(data)]
stm32: -1256 -0.318% PYBV10
cc3200: +288 +0.157%
esp8266: -260 -0.037% GENERIC
esp32: -216 -0.014% GENERIC[incl -1072(data)]
nrf: +116 +0.067% pca10040
rp2: -664 -0.135% PICO
samd: +844 +0.607% ADAFRUIT_ITSYBITSY_M4_EXPRESS
As part of this change the .mpy file format version is bumped to version 6.
And mpy-tool.py has been improved to provide a good visualisation of the
contents of .mpy files.
In summary: this commit changes the bytecode to use qstr indirection, and
reworks the .mpy file format to be simpler and allow .mpy files to be
executed in-place. Performance is not impacted too much. Eventually it
will be possible to store such .mpy files in a linear, read-only, memory-
mappable filesystem so they can be executed from flash/ROM. This will
essentially be able to replace frozen code for most applications.
Signed-off-by: Damien George <damien@micropython.org>
This changes the git commit message line length check to ignore lines that
contain URLs, since these cannot be wrapped without breaking tools that
detect URLs and create a link.
Signed-off-by: David Lechner <david@pybricks.com>
This allows the compiler to merge strings: e.g. "update",
"difference_update" and "symmetric_difference_update" will all point to the
same memory.
No functional change.
The size reduction depends on the number of qstrs in the build. The change
this commit brings is:
bare-arm: -4 -0.007%
minimal x86: +150 +0.092% [incl +48(data)]
unix x64: -608 -0.118%
unix nanbox: -572 -0.126% [incl +32(data)]
stm32: -1392 -0.352% PYBV10
cc3200: -448 -0.244%
esp8266: -1208 -0.173% GENERIC
esp32: -1028 -0.068% GENERIC[incl -1020(data)]
nrf: -440 -0.252% pca10040
rp2: -1072 -0.217% PICO
samd: -368 -0.264% ADAFRUIT_ITSYBITSY_M4_EXPRESS
Performance is also improved (on bare metal at least) for the
core_import_mpy_multi.py, core_import_mpy_single.py and core_qstr.py
performance benchmarks.
Originally at adafruit#4583
Signed-off-by: Artyom Skrobov <tyomitch@gmail.com>
Changes are:
- decision to remount local filesystem on remote device is made only if
"MPY: soft reboot" is seen in the output after sending a ctrl-D
- a nice message is printed to the user when the remount occurs
- soft reset during raw REPL is now handled correctly
Fixes issue #7731.
Signed-off-by: Damien George <damien@micropython.org>
A backslash in the directory name will end up being passed through to the
device and becoming a backslash in a filename, rather than being
interpreted as directories. This makes "cp -r" problematic on Windows.
Changing to simply "/",join() fixes this.
As a prerequisite to upgrading to Zephyr v2.7.0, upgrade CI to use
Zephyr docker image v0.21.0. In particular, this is needed to pick up a
newer CMake version because Zephyr v2.7.0 increased the minimum CMake
version required to 3.20.0.
Signed-off-by: Maureen Helm <maureen.helm@intel.com>
This allows the remote MicroPython instance to create and delete
directories from the mounted host filesystem in addition to the already
existing functionality of reading, creating, and modifying files.
Signed-off-by: Michael Bentley <mikebentley15@gmail.com>
This changes makemanifest.py & mpy-tool.py to merge string and mpy names
into the same list (now mp_frozen_names).
The various paths for loading a frozen module (mp_find_frozen_module) and
checking existence of a frozen module (mp_frozen_stat) use a common
function that searches this list.
In addition, the frozen lookup will now only take place if the path starts
with ".frozen", which needs to be added to sys.path.
This fixes issues #1804, #2322, #3509, #6419.
Signed-off-by: Jim Mussared <jim.mussared@gmail.com>
Takes the functionality from tools/make-frozen.py, adds support for
multiple frozen directories, and moves it to tools/makemanifest.py.
Signed-off-by: Jim Mussared <jim.mussared@gmail.com>
Any board with a board.json file will be built. ESP32-based boards will be
built using the IDF at $IDF_PATH_V42, all other MCU variants (S2, S3, C3)
will be built using the IDF at $IDF_PATH_V44.
Signed-off-by: Damien George <damien@micropython.org>
Any board with a board.json file will be built. Additional variants for
certain pyboards will also be built by the explicit build-stm32-extra.sh
script. Both .dfu and .hex files will be made available.
Also build boards in a sorted order, and don't stop building if a single
board fails.
Signed-off-by: Damien George <damien@micropython.org>
This is to make the builds for all nucleo/discovery boards uniform, so they
can be treated the same by the auto build scripts.
The CI script is updated to explicitly enable mboot and packing, to test
these features.
Signed-off-by: Damien George <damien@micropython.org>
There is no release of IDF v4.4 yet but master is now on v5.0-dev so a
specific commit must be chosen to stick to v4.4.
Signed-off-by: Damien George <damien@micropython.org>
IDF v4.4 does not have an official release so for now use the latest
master. Also remove building GENERIC with no options (all the other boards
are no-option builds), to keep CI time reasonable.
Signed-off-by: Damien George <damien@micropython.org>
This commit removes all parts of code associated with the existing
MICROPY_OPT_CACHE_MAP_LOOKUP_IN_BYTECODE optimisation option, including the
-mcache-lookup-bc option to mpy-cross.
This feature originally provided a significant performance boost for Unix,
but wasn't able to be enabled for MCU targets (due to frozen bytecode), and
added significant extra complexity to generating and distributing .mpy
files.
The equivalent performance gain is now provided by the combination of
MICROPY_OPT_LOAD_ATTR_FAST_PATH and MICROPY_OPT_MAP_LOOKUP_CACHE (which has
been enabled on the unix port in the previous commit).
It's hard to provide precise performance numbers, but tests have been run
on a wide variety of architectures (x86-64, ARM Cortex, Aarch64, RISC-V,
xtensa) and they all generally agree on the qualitative improvements seen
by the combination of MICROPY_OPT_LOAD_ATTR_FAST_PATH and
MICROPY_OPT_MAP_LOOKUP_CACHE.
For example, on a "quiet" Linux x64 environment (i3-5010U @ 2.10GHz) the
change from CACHE_MAP_LOOKUP_IN_BYTECODE, to LOAD_ATTR_FAST_PATH combined
with MAP_LOOKUP_CACHE is:
diff of scores (higher is better)
N=2000 M=2000 bccache -> attrmapcache diff diff% (error%)
bm_chaos.py 13742.56 -> 13905.67 : +163.11 = +1.187% (+/-3.75%)
bm_fannkuch.py 60.13 -> 61.34 : +1.21 = +2.012% (+/-2.11%)
bm_fft.py 113083.20 -> 114793.68 : +1710.48 = +1.513% (+/-1.57%)
bm_float.py 256552.80 -> 243908.29 : -12644.51 = -4.929% (+/-1.90%)
bm_hexiom.py 521.93 -> 625.41 : +103.48 = +19.826% (+/-0.40%)
bm_nqueens.py 197544.25 -> 217713.12 : +20168.87 = +10.210% (+/-3.01%)
bm_pidigits.py 8072.98 -> 8198.75 : +125.77 = +1.558% (+/-3.22%)
misc_aes.py 17283.45 -> 16480.52 : -802.93 = -4.646% (+/-0.82%)
misc_mandel.py 99083.99 -> 128939.84 : +29855.85 = +30.132% (+/-5.88%)
misc_pystone.py 83860.10 -> 82592.56 : -1267.54 = -1.511% (+/-2.27%)
misc_raytrace.py 21490.40 -> 22227.23 : +736.83 = +3.429% (+/-1.88%)
This shows that the new optimisations are at least as good as the existing
inline-bytecode-caching, and are sometimes much better (because the new
ones apply caching to a wider variety of map lookups).
The new optimisations can also benefit code generated by the native
emitter, because they apply to the runtime rather than the generated code.
The improvement for the native emitter when LOAD_ATTR_FAST_PATH and
MAP_LOOKUP_CACHE are enabled is (same Linux environment as above):
diff of scores (higher is better)
N=2000 M=2000 native -> nat-attrmapcache diff diff% (error%)
bm_chaos.py 14130.62 -> 15464.68 : +1334.06 = +9.441% (+/-7.11%)
bm_fannkuch.py 74.96 -> 76.16 : +1.20 = +1.601% (+/-1.80%)
bm_fft.py 166682.99 -> 168221.86 : +1538.87 = +0.923% (+/-4.20%)
bm_float.py 233415.23 -> 265524.90 : +32109.67 = +13.756% (+/-2.57%)
bm_hexiom.py 628.59 -> 734.17 : +105.58 = +16.796% (+/-1.39%)
bm_nqueens.py 225418.44 -> 232926.45 : +7508.01 = +3.331% (+/-3.10%)
bm_pidigits.py 6322.00 -> 6379.52 : +57.52 = +0.910% (+/-5.62%)
misc_aes.py 20670.10 -> 27223.18 : +6553.08 = +31.703% (+/-1.56%)
misc_mandel.py 138221.11 -> 152014.01 : +13792.90 = +9.979% (+/-2.46%)
misc_pystone.py 85032.14 -> 105681.44 : +20649.30 = +24.284% (+/-2.25%)
misc_raytrace.py 19800.01 -> 23350.73 : +3550.72 = +17.933% (+/-2.79%)
In summary, compared to MICROPY_OPT_CACHE_MAP_LOOKUP_IN_BYTECODE, the new
MICROPY_OPT_LOAD_ATTR_FAST_PATH and MICROPY_OPT_MAP_LOOKUP_CACHE options:
- are simpler;
- take less code size;
- are faster (generally);
- work with code generated by the native emitter;
- can be used on embedded targets with a small and constant RAM overhead;
- allow the same .mpy bytecode to run on all targets.
See #7680 for further discussion. And see also #7653 for a discussion
about simplifying mpy-cross options.
Signed-off-by: Jim Mussared <jim.mussared@gmail.com>
- Moves definition of BOARD_FLASH_SIZE and other header files related to
flash configuration into the Makefile.
- Adds board specific clock_config.h.
- Adds board.h, pin_mux.h, and peripherals.h as they are
required by NXP MCU SDK in order to use our own clock_config.h.
- Renames board specific FlexSPI configuration files.
- Updates flash frequency of MIMXRT1020_EVK
- Creates separated flash_config files for QSPI NOR and
QSPI Hyper flash.
- Unifies VFS start address to be @ 1M for 1010 and 1020 boards.
- Unifies 1050EVK boards
- Adds support to both NOR and HyperFlash on boards with
both capabilities.
- Adds automatic FlexRAM initialization to start-up code based on
linker script and NXP HAL.
- Applies code formatting to all files in mimxrt port.
With this change the flash configuration is restructured and
organized. This simplifies the configuration process and
provides a better overview of each board's settings. With the integration
of clock_config.h, board.h, pin_mux.h, and peripherals.h we gain better
control of the settings and clock configurations. Furthermore the
implementation of an explicit FlexRAM setup improves the system
performance and allows for performance tuning.
Signed-off-by: Philipp Ebensberger
To keep things neat and tidy, we ensure that each file has 1 and only 1
newline at the end of each file.
Signed-off-by: David Lechner <david@pybricks.com>
This feature {x=} was introduced in Python 3.8 so needs a separate .exp
file to run on earlier Python versions.
See https://bugs.python.org/issue36817
Signed-off-by: Damien George <damien@micropython.org>
This makes it work like --no-follow and --no-exclusive using a mutex group
and dest. Although the current implementation with BooleanOptionAction is
neater it requires Python 3.9, so don't use this feature.
Signed-off-by: Jim Mussared <jim.mussared@gmail.com>
The --no-exclusive flag was accidentally added to the mutex group in
178198a01d.
The --soft-reset flag was accidentally added to the mutex group in
41adf17830.
These flags can be specified independently to --[no-]follow so should not
be in that mutex group.
Signed-off-by: Jim Mussared <jim.mussared@gmail.com>
And using "-B" means mpy-cross is forcefully rebuilt, sometimes with
invalid CFLAGS_EXTRA options which makes the auto-build fail.
Signed-off-by: Damien George <damien@micropython.org>
The sys.stdin.buffer and sys.stdout.buffer streams work just as well (and
are just as fast) as pyb.USB_VCP on stm32 devices, so there's no need to
have the USB_VCP specialisation code, which just adds complexity.
Also, on stm32 devices with both USB and UART (or other serial interface),
if something other than the USB_VCP port is used for the serial connection
then mpremote mount will not work because it will default to reading and
writing on USB_VCP instead of the other connected serial stream.
As part of this simplification, support for a second port as input is
removed (this feature was never exposed to the user).
Signed-off-by: Damien George <damien@micropython.org>
This implements (most of) the PEP-498 spec for f-strings and is based on
https://github.com/micropython/micropython/pull/4998 by @klardotsh.
It is implemented in the lexer as a syntax translation to `str.format`:
f"{a}" --> "{}".format(a)
It also supports:
f"{a=}" --> "a={}".format(a)
This is done by extracting the arguments into a temporary vstr buffer,
then after the string has been tokenized, the lexer input queue is saved
and the contents of the temporary vstr buffer are injected into the lexer
instead.
There are four main limitations:
- raw f-strings (`fr` or `rf` prefixes) are not supported and will raise
`SyntaxError: raw f-strings are not supported`.
- literal concatenation of f-strings with adjacent strings will fail
"{}" f"{a}" --> "{}{}".format(a) (str.format will incorrectly use
the braces from the non-f-string)
f"{a}" f"{a}" --> "{}".format(a) "{}".format(a) (cannot concatenate)
- PEP-498 requires the full parser to understand the interpolated
argument, however because this entirely runs in the lexer it cannot
resolve nested braces in expressions like
f"{'}'}"
- The !r, !s, and !a conversions are not supported.
Includes tests and cpydiffs.
Signed-off-by: Jim Mussared <jim.mussared@gmail.com>
For consistency with other board-level config macros that begin with
MICROPY_HW_USB.
Also allow boards in the mimxrt, nrf and samd ports to configure these
values.
Signed-off-by: Damien George <damien@micropython.org>
The firmware for Teensy 4.0, Teensy 4.1 and MIMXRT1020_EVK are created.
Users of other MIMXRT10xx_EVK boards should be able to build the firmware
themselves, they might need specific DEBUG settings.
The Makefile had to be changed in order to build the .bin file as well.
Coverage calculated by Codecov has the same reliability/deterministic
issues as Coveralls did, so the problem is likely to do with the output of
lcov/gcov, rather than the analysis and display of the data.
Switch from lcov to gcov for data generation to try and simplify this
process of computing coverage.
Signed-off-by: Damien George <damien@micropython.org>
Now a ctrl-C will not stop mpremote, rather this character will be passed
through to the attached device.
The mpremote version is also increased to 0.0.5.
Signed-off-by: Damien George <damien@micropython.org>
Using just the list of available ports, instead of a hard-coded list of
possible ports, means that all ports will be available for auto connection.
And the order that they will be attempted in will match what's printed by
"mpremote connect list" (and will be the same as before, trying ACMx before
USBx). Auto-connect will also now work on Mac, and will allow all COM
ports on Windows.
Signed-off-by: Damien George <damien@micropython.org>
Following on from ef16834887, this adds a
coverage build and running of the test suite on an ARM 32-bit Linux-based
architecture.
Signed-off-by: Damien George <damien@micropython.org>
This adds a coverage build and running of the test suite on a MIPS 32-bit
big endian architecture. It uses the feature of qemu to execute foreign
code as though it were native to the system (using qemu user mode). The
code compiled for MIPS will run under the qemu VM, but all syscalls made by
this code go to the host (Linux) system.
See related #7268 and #7273.
Signed-off-by: Damien George <damien@micropython.org>
As the new default behaviour, this allows PyDFU to be used with all
devices, not just the ones matching a specific set of VID/PID values. But
it's still possible to specify VID/PID if needed to narrow down the
selection of the USB device.
Signed-off-by: Tobias Thyrrestrup <tt@LEGO.com>
This can be treated by the linker the same as R_X86_64_REX_GOTPCRELX,
according to https://reviews.llvm.org/D18301.
Signed-off-by: Damien George <damien@micropython.org>
Since version 21.4b0, Black now processes one-line docstrings by stripping
leading and trailing spaces, and adding a padding space when needed to
break up """"; see https://github.com/psf/black/pull/1740
This commit makes the Python code in this repository conform to this rule.
This is now the default, but can be overridden with CLI `--no-exclusive`,
or constructing `Pyboard(..., exclusive=False)`.
Signed-off-by: Damien George <damien@micropython.org>
It's a bit of a pitfall with user C modules that including them in the
build does not automatically enable them. This commit changes the docs and
examples for user C modules to encourage writers of user C modules to
enable them unconditionally. This makes things simpler and covers most use
cases.
See discussion in issue #6960, and also #7086.
Signed-off-by: Damien George <damien@micropython.org>
Instead of raising a ZeroDivisionError, this tool now just skips any
elements in the DFU file that have zero size.
Signed-off-by: Damien George <damien@micropython.org>
Updates the zephyr docker image to the latest, v0.11.13. This updates CI
to use zephyr SDK v0.12.2 and GCC v10.2.0 for the zephyr port.
Signed-off-by: Maureen Helm <maureen.helm@nxp.com>
Refactors the zephyr build infrastructure to build MicroPython as a
cmake target, using the recently introduced core cmake rules.
This change makes it possible to build the zephyr port like most other
zephyr applications using west or cmake directly. It simplifies building
with extra cmake arguments, such as specifying an alternate conf file or
adding an Arduino shield. It also enables building the zephyr port
anywhere in the host file system, which will allow regressing across
multiple boards with the zephyr twister script.
Signed-off-by: Maureen Helm <maureen.helm@nxp.com>