It was incorrect to NULL out the pointer to our heap allocated buffer in
`reset`, because subsequent to framebuffer_reset, but while
the heap was still active, we could call `get_bufinfo` again,
leading to a fresh allocation on the heap that is about to be destroyed.
Typical stack trace:
```
#1 0x0006c368 in sharpdisplay_framebuffer_get_bufinfo
#2 0x0006ad6e in _refresh_display
#3 0x0006b168 in framebufferio_framebufferdisplay_background
#4 0x00069d22 in displayio_background
#5 0x00045496 in supervisor_background_tasks
#6 0x000446e8 in background_callback_run_all
#7 0x00045546 in supervisor_run_background_tasks_if_tick
#8 0x0005b042 in common_hal_neopixel_write
#9 0x00044c4c in clear_temp_status
#10 0x000497de in spi_flash_flush_keep_cache
#11 0x00049a66 in supervisor_external_flash_flush
#12 0x00044b22 in supervisor_flash_flush
#13 0x0004490e in filesystem_flush
#14 0x00043e18 in cleanup_after_vm
#15 0x0004414c in run_repl
#16 0x000441ce in main
```
When this happened -- which was inconsistent -- the display would keep
some heap allocation across reset which is exactly what we need to avoid.
NULLing the pointer in reconstruct follows what RGBMatrix does, and that
code is a bit more battle-tested anyway.
If I had a motivation for structuring the SharpMemory code differently,
I can no longer recall it.
Testing performed: Ran my complicated calculator program over multiple
iterations without observing signs of heap corruption.
Closes: #3473
As originally written, the TRANSLATE_SOURCES_EXC was incorrect. If
more than one build directory existed, "make translate"
(and make check-translate) would error.
I corrected the problem, commented it, and added a number of additional
exclude directives.
I reviewed the PR and should have caught this, but did not.
I have a function where it should be impossible to reach the end, so I put in a safe-mode reset at the bottom:
```
int find_unused_slot(void) {
// precondition: you already verified that a slot was available
for (int i=0; i<NUM_SLOTS; i++) {
if( slot_free(i)) {
return i;
}
}
safe_mode_reset(MICROPY_FATAL_ERROR);
}
```
However, the compiler still gave a diagnostic, because safe_mode_reset was not declared NORETURN.
So I started by teaching the compiler that reset_into_safe_mode never returned. This leads at least one level deeper due to reset_cpu needing to be a NORETURN function. Each port is a little different in this area. I also marked reset_to_bootloader as NORETURN.
Additional notes:
* stm32's reset_to_bootloader was not implemented, but now does a bare reset. Most stm32s are not fitted with uf2 bootloaders anyway.
* ditto cxd56
* esp32s2 did not implement reset_cpu at all. I used esp_restart(). (not tested)
* litex did not implement reset_cpu at all. I used reboot_ctrl_write. But notably this is what reset_to_bootloader already did, so one or the other must be incorrect (not tested). reboot_ctrl_write cannot be declared NORETURN, as it returns unless the special value 0xac is written), so a new unreachable forever-loop is added.
* cxd56's reset is via a boardctl() call which can't generically be declared NORETURN, so a new unreacahble "for(;;)" forever-loop is added.
* In several places, NVIC_SystemReset is redeclared with NORETURN applied. This is accepted just fine by gcc. I chose this as preferable to editing the multiple copies of CMSIS headers where it is normally declared.
* the stub safe_mode reset simply aborts. This is used in mpy-cross.