It consists of:
1. "do_handhake" param (default True) to wrap_socket(). If it's False,
handshake won't be performed by wrap_socket(), as it would be done in
blocking way normally. Instead, SSL socket can be set to non-blocking mode,
and handshake would be performed before the first read/write request (by
just returning EAGAIN to these requests, while instead reading/writing/
processing handshake over the connection). Unfortunately, axTLS doesn't
really support non-blocking handshake correctly. So, while framework for
this is implemented on MicroPython's module side, in case of axTLS, it
won't work reliably.
2. Implementation of .setblocking() method. It must be called on SSL socket
for blocking vs non-blocking operation to be handled correctly (for
example, it's not enough to wrap non-blocking socket with wrap_socket()
call - resulting SSL socket won't be itself non-blocking). Note that
.setblocking() propagates call to the underlying socket object, as
expected.
For this, add wrap_socket(do_handshake=False) param. CPython doesn't have
such a param at a module's global function, and at SSLContext.wrap_socket()
it has do_handshake_on_connect param, but that uselessly long.
Beyond that, make write() handle not just MBEDTLS_ERR_SSL_WANT_WRITE, but
also MBEDTLS_ERR_SSL_WANT_READ, as during handshake, write call may be
actually preempted by need to read next handshake message from peer.
Likewise, for read(). And even after the initial negotiation, situations
like that may happen e.g. with renegotiation. Both
MBEDTLS_ERR_SSL_WANT_READ and MBEDTLS_ERR_SSL_WANT_WRITE are however mapped
to the same None return code. The idea is that if the same read()/write()
method is called repeatedly, the progress will be made step by step anyway.
The caveat is if user wants to add the underlying socket to uselect.poll().
To be reliable, in this case, the socket should be polled for both POLL_IN
and POLL_OUT, as we don't know the actual expected direction. But that's
actually problematic. Consider for example that write() ends with
MBEDTLS_ERR_SSL_WANT_READ, but gets converted to None. We put the
underlying socket on pull using POLL_IN|POLL_OUT but that probably returns
immediately with POLL_OUT, as underlyings socket is writable. We call the
same ussl write() again, which again results in MBEDTLS_ERR_SSL_WANT_READ,
etc. We thus go into busy-loop.
So, the handling in this patch is temporary and needs fixing. But exact way
to fix it is not clear. One way is to provide explicit function for
handshake (CPython has do_handshake()), and let *that* return distinct
codes like WANT_READ/WANT_WRITE. But as mentioned above, past the initial
handshake, such situation may happen again with at least renegotiation. So
apparently, the only robust solution is to return "out of bound" special
sentinels like WANT_READ/WANT_WRITE from read()/write() directly. CPython
throws exceptions for these, but those are expensive to adopt that way for
efficiency-conscious implementation like MicroPython.
In CPython the random module is seeded differently on each import, and so
this new macro option MICROPY_PY_URANDOM_SEED_INIT_FUNC allows to implement
such a behaviour.
Since commit da938a83b5 the tcp_arg() that is
set for the new connection is the new connection itself, and the parent
listening socket is found in the pcb->connected entry.
Use uos.dupterm for REPL configuration of the main USB_VCP(0) stream on
dupterm slot 1, if USB is enabled. This means dupterm can also be used to
disable the boot REPL port if desired, via uos.dupterm(None, 1).
For efficiency this adds a simple hook to the global uos.dupterm code to
work with streams that are known to be native streams.
Some users of this module may require the LwIP stack to run at an elevated
priority, to protect against concurrency issues with processing done by the
underlying network interface. Since LwIP doesn't provide such protection
it must be done here (the other option is to run LwIP in a separate thread,
and use thread protection mechanisms, but that is a more heavyweight
solution).
The bug polling for readability was: if alloc==0 and tcp.item==NULL then
the code would incorrectly check tcp.array[iget] which is an invalid
dereference when alloc==0. This patch refactors the code to use a helper
function lwip_socket_incoming_array() to return the correct pointer for the
incomming connection array.
Fixes issue #4511.
As mentioned in #4450, `websocket` was experimental with a single intended
user, `webrepl`. Therefore, we'll make this change without a weak
link `websocket` -> `uwebsocket`.
Previously crypto-algorithms impl was included even if MICROPY_SSL_MBEDTLS
was in effect, thus we relied on the compiler/linker to cut out the unused
functions.
Python defines warnings as belonging to categories, where category is a
warning type (descending from exception type). This is useful, as e.g.
allows to disable warnings selectively and provide user-defined warning
types. So, implement this in MicroPython, except that categories are
represented just with strings. However, enough hooks are left to implement
categories differently per-port (e.g. as types), without need to patch each
and every usage.
This header is deprecated as of mbedtls 2.8.0, as shipped with Ubuntu
18.04. Leads to #warning which is promoted to error with uPy compile
options.
Note that the current version of mbedtls is 2.14 at the time of writing.
It's more robust to have the version defined statically in a header file,
rather than dynamically generating it via git using a git tag. In case
git doesn't exist, or a different source control tool is used, it's
important to still have the uPy version number available.
SHORT, INT, LONG, LONGLONG, and unsigned (U*) variants are being defined.
This is done at compile using GCC-style predefined macros like
__SIZEOF_INT__. If the compiler doesn't have such defines, no such types
will be defined.
The recent implementation of the listen backlog meant that the logic to
test for readability of such a socket changed, and this commit updates the
logic to work again.
Array to hold waiting connections is in-place if backlog=1, else is a
dynamically allocated array. Incoming connections are processed FIFO
style to maintain fairness.
sizeof() can work in two ways: a) calculate size of already instantiated
structure ("sizeof variable") - in this case we already no layout; b) size
of structure decsription ("sizeof type"). In the latter case, LAYOUT_NATIVE
was assumed, but there should possibility to calculate size for other
layouts too. So, with this patch, there're now 2 forms:
uctypes.sizeof(struct)
uctypes.sizeof(struct_desc, layout)
This value is unused. It was an artifact of early draft design, but
bitfields were optimized to use scalar one-word encoding, to allow
compact encoding of typical multiple bitfields in MCU control
registers.
Since mbedtls 2.7.0 new digest functions were introduced with a "_ret"
suffix to allow the functions to return an error message (eg, if the
underlying hardware acceleration failed). These new functions must be used
instead of the old ones to prevent deprecation warnings, or link errors for
missing functions, depending on the mbedtls configuration.
This removes the need for a separate axtls build stage, and builds all
axtls object files along with other code. This simplifies and cleans up
the build process, automatically builds axtls when needed, and puts the
axtls object files in the correct $(BUILD) location.
The MicroPython axtls configuration file is provided in
extmod/axtls-include/config.h
The underlying socket can handling polling, and any other transparent ioctl
requests. Note that CPython handles the case of polling an ssl object by
polling the file descriptor of the underlying socket file, and that
behaviour is emulated here.
Otherwise they may be called on a socket that no longer exists.
For example, if the GC calls the finaliser on the socket and then reuses
its heap memory, the "callback" entry of the old socket may contain invalid
data. If lwIP then calls the TCP callback the code may try to call the
user callback object which is now invalid. The lwIP callbacks must be
deregistered during the closing of the socket, before all the pcb pointers
are set to NULL.
This feature is controlled at compile time by MICROPY_PY_URE_SUB, disabled
by default.
Thanks to @dmazzella for the original patch for this feature; see #3770.
This feature is controlled at compile time by
MICROPY_PY_URE_MATCH_SPAN_START_END, disabled by default.
Thanks to @dmazzella for the original patch for this feature; see #3770.
This feature is controlled at compile time by MICROPY_PY_URE_MATCH_GROUPS,
disabled by default.
Thanks to @dmazzella for the original patch for this feature; see #3770.
This will allow implementations other than axTLS.
This commit includes additions of checks and clarifications of exceptions
related to user input.
To make the interface cleaner, I've disallowed switching from encrypt to
decrypt in the same object, as this is not always possible with other
crypto libraries (not all libraries have AES_convert_key like axTLS).
Allow including crypto consts based on compilation settings. Disabled by
default to reduce code size; if one wants extra code readability, can
enable them.
The API follows guidelines of https://www.python.org/dev/peps/pep-0272/,
but is optimized for code size, with the idea that full PEP 0272
compatibility can be added with a simple Python wrapper mode.
The naming of the module follows (u)hashlib pattern.
At the bare minimum, this module is expected to provide:
* AES128, ECB (i.e. "null") mode, encrypt only
Implementation in this commit is based on axTLS routines, and implements
following:
* AES 128 and 256
* ECB and CBC modes
* encrypt and decrypt
With this patch objects are only checked that they have the stream protocol
at the start of their use as a stream, and afterwards the efficient
mp_get_stream() helper is used to extract the stream protocol C methods.
This patch changes dupterm to call the native C stream methods on the
connected stream objects, instead of calling the Python readinto/write
methods. This is much more efficient for native stream objects like UART
and webrepl and doesn't require allocating a special dupterm array.
This change is a minor breaking change from the user's perspective because
dupterm no longer accepts pure user stream objects to duplicate on. But
with the recent addition of uio.IOBase it is possible to still create such
classes just by inheriting from uio.IOBase, for example:
import uio, uos
class MyStream(uio.IOBase):
def write(self, buf):
# existing write implementation
def readinto(self, buf):
# existing readinto implementation
uos.dupterm(MyStream())
Via the config value MICROPY_PY_UHASHLIB_SHA256. Default to enabled to
keep backwards compatibility.
Also add default value for the sha1 class, to at least document its
existence.
For consistency with other modules, and to help avoid clashes with the
actual underlying functions that do the hashing (eg
crypto-algorithms/sha256.c:sha256_update).
Following other C-level protocols, this VFS protocol is added to help
abstract away implementation details of the underlying VFS in an efficient
way. As a starting point, the import_stat function is put into this
protocol so that the VFS sub-system does not need to know about every VFS
implementation in order to do an efficient stat for importing files.
In the future it might be worth adding other functions to this protocol.
This VFS component allows to mount a host POSIX filesystem within the uPy
VFS sub-system. All traditional POSIX file access then goes through the
VFS, allowing to sandbox a uPy process to a certain sub-dir of the host
system, as well as mount other filesystem types alongside the host
filesystem.
If mbedtls_ctr_drbg_seed() is available in the mbedtls bulid then so should
be mbedtls_entropy_func(). Then it's up to the port to configure a valid
entropy source, eg via MBEDTLS_ENTROPY_HARDWARE_ALT.
Otherwise the "sock" member may have an undefined value if wrap_socket
fails with an exception and exits early, and then if the finaliser runs it
will try to close an invalid stream object.
Fixes issue #3828.
This matches CPython behaviour on Linux: a socket that is new and not
listening or connected is considered "hung up".
Thanks to @rkojedzinszky for the initial patch, PR #3457.
The order of function calls in an arithmetic expression is undefined and so
they must be written out as sequential statements.
Thanks to @dv-extrarius for reporting this issue, see issue #3690.
The 2nd and 3rd args of the ternary operator are treated like they are in
the same expression and must have similar types. void is not compatible
with int so that's why the compiler is complaining.
This patch moves the implementation of stream closure from a dedicated
method to the ioctl of the stream protocol, for each type that implements
closing. The benefits of this are:
1. Rounds out the stream ioctl function, which already includes flush,
seek and poll (among other things).
2. Makes calling mp_stream_close() on an object slightly more efficient
because it now no longer needs to lookup the close method and call it,
rather it just delegates straight to the ioctl function (if it exists).
3. Reduces code size and allows future types that implement the stream
protocol to be smaller because they don't need a dedicated close method.
Code size reduction is around 200 bytes smaller for x86 archs and around
30 bytes smaller for the bare-metal archs.
This patch takes the software SPI implementation from extmod/machine_spi.c
and moves it to a dedicated file in drivers/bus/softspi.c. This allows the
SPI driver to be used independently of the uPy runtime, making it a more
general component.
This patch eliminates heap allocation in the VFS FAT disk IO layer, when
calling the underlying readblocks/writeblocks methods. The bytearray
object that is passed to these methods is now allocated on the C stack
rather than the heap (it's only 4 words big).
This means that these methods should not retain a pointer to the buffer
object that is passed in, but this was already a restriction because the
original heap-allocated bytearray had its buffer passed by reference.
This patch just moves the definition of the wrapper object fat_vfs_open_obj
to the location of the definition of its function, which matches how it's
done in most other places in the code base.
The fat_vfs_ilistdir2() function was only used by fat_vfs_ilistdir_func()
so moving the former into the same file as the latter allows it to be
placed directly into the latter function, thus saving code size.
CPython doesn't allow SEEK_CUR with non-zero offset for files in text mode,
and uPy inherited this behaviour for both text and binary files. It makes
sense to provide full support for SEEK_CUR of binary-mode files in uPy, and
to do this in a minimal way means also allowing to use SEEK_CUR with
non-zero offsets on text-mode files. That seems to be a fair compromise.